
Efficient View-Dependent Image-Based
Rendering with Projective Texture-Mapping

Paul Debevec, Yizhou Yu, and George Borshukov
Univeristy of California at Berkeley

debevec@cs.berkeley.edu

Abstract. This paper presents how the image-based rendering technique ofview-
dependent texture-mapping (VDTM) can be efficiently implementedusing projec-
tive texture mapping, a feature commonly available inpolygon graphics hardware.
VDTM is a technique for generating novelviews of a scene with approximately
known geometry making maximal useof a sparse set of original views. The origi-
nal presentation of VDTMby Debevec, Taylor, and Malik required significant per-
pixelcomputation and did not scale well with the number of original images.In our
technique, we precompute for each polygon the set of originalimages in which it
is visible and create a “view map” data structurethat encodes the best texture map
to use for a regularly sampled setof possible viewing directions. To generate a
novel view, the viewmap for each polygon is queried to determine a set of no more
thanthree original images to blend together to render the polygon.Invisible trian-
gles are shaded using an object-space hole-fillingmethod. We show how the ren-
dering process can be streamlined forimplementation on standard polygon graph-
ics hardware, and presentresults of using the method to render a large-scale model
of theBerkeley bell tower and its surrounding campus environment.

1 Introduction

A clear application of image-based modeling and rendering techniques will be in the
creation and display of realistic virtual environments of real places. Acquiring geomet-
ric models of environments has been the subject of research in interactive image-based
modeling techniques, and is now becoming practical to perform with techniques such as
laser scanning or interactive photogrammetry. Acquiring the corresponding appearance
information (under given lighting conditions) is easily performed with a digital camera.
The remaining challenge is to use the recovered geometry and the available real views
to generate novel views of the scene quickly and realistically.

In addressing this problem, it is important to make judicious use of all the available
views, especially when a particular surface is seen from different directions in multiple
images. This problem was addressed in [2], which presented view-dependent texture
mapping as a means to render each pixel of a novel view as a blend of its correspond-
ing pixels in the original views. However, the technique presented did not guarantee
smooth blending between images as the viewpoint changed and did not scale well with
the number of available views.

In this paper we reformulate view-dependent texture-mapping to guarantee smooth
blending between images, to scale well with the number of views, and to make efficient
use of projective polygon texture-mapping hardware. The result is an effective and ef-
ficient technique for generating virtual views of a scene under the following conditions:

� A reasonably accurate geometric model of the scene is available

� A set of calibrated photographs (with known locations and known imaging geom-
etry) is available

� The photographs are taken in the same lighting conditions
� The photographs generally observe each surface of the scene from a few different

angles
� Surfaces in the scene are not extremely specular

2 Previous Work

Early image-based modeling and rendering work [16, 5, 8], presented methods of using
image depth or image correspondences to reproject the pixels from one camera position
to the viewpoint of another. However, the work did not concentrate on how to combine
appearance information from multiple images to optimally produce novel views.

View-Dependent Texture Mapping (VDTM) was presented in [2] as a method of ren-
dering interactively constructed 3D architectural scenes using images taken from multi-
ple locations. The method attempted to make full use of the available imagery using the
following principle: to generate a novel view of a particular surface patch in the scene,
the best original image from which to sample reflectance information is the image that
observed the patch from as close a direction as possible as the desired novel view. As
an example, suppose that a particular surface of a building is seen in three original im-
ages from the left, front, and right. If one is generating a novel view from the left, one
would want to use the surface’s appearance in the left view as the texture map. Simi-
larly, for a view in front of the surface one would most naturally use the frontal view.
For an animation of moving from the left to the front, it would make sense to smoothly
blend, as in morphing, between the left and front texture maps during the animation in
order to prevent the texture map suddenly changing from one frame to the next. As a re-
sult, the view-dependent texture mapping approach allows renderings to be considerably
more realistic than static texture-mapping allows, since it better represents non-diffuse
reflectance and can simulate the appearance of unmodeled geometry.

Other image-based modeling and rendering work has addressed the problem of
blending between available views of the scene in order to produce renderings. In [6],
blending is performed amongst a dense regular sampling of images in order to generate
novel views. Since scene geometry is not used, a very large number of views is neces-
sary to produce even low-resolution renderings. [4] is similar to [6] but uses irregularly
sampled views and leverages approximate scene geometry derived from object silhou-
ettes. View-dependent texture-mapping, used with a dense sampling of images and with
simple geometry, reduces to the light field approach. The representation used in the pre-
sented methods restricts the viewpoint to be outside the convex hull of an object or inside
a convex empty region of space. This restriction, and the number of images necessary,
could complicate using these methods for acquiring and rendering a large environment.
The work in this paper leverages the light field methods to render each surface of a model
as a light field constructed from a sparse set of views; since the model is assumed to con-
form well to the scene and the scene is assumed to be predominantly diffuse, far fewer
images are necessary to achieve coherent results.

The implementation of VDTM in [2] computed texture weighting on a per-pixel ba-
sis, required visibility calculations to be performed at rendering time, examined every
original view to produce every novel view, and only blended between the two closest
viewpoints available. As a result, it was computationally expensive (several minutes
per frame) and did not always guarantee the image blending to vary smoothly as the
viewpoint changed. Subsequent work [9, 7] presented more efficient methods for op-

tically compositing multiple re-rendered views of a scene. In this work we associate
appearance information with surfaces, rather than with viewpoints, in order to better in-
terpolate between widely spaced viewpoints in which each sees only a part of the scene.
We use visibility preprocessing, polygon view maps, and projective texture mapping to
implement our technique.

3 Overview of the Method

Our method for VDTM first preprocesses the scene to determine which images observe
which polygons from which directions. This preprocessing occurs as follows:

1. Compute Visibility: For each polygon, determine in which images it is seen.
Split polygons that are partially seen in one of the images. (Section 5).

2. Fill Holes: For each polygon not seen in any view, choose appropriate vertex col-
ors for performing Gouraud shading. (Section 5).

3. Construct View Maps: For each polygon, store the index of the image closest
in viewing angle for each direction of a regularly sampled viewing hemisphere.
(Section 7).

The rendering algorithm (Section 8) runs as follows:

1. Draw all polygons seen in none of the original views using the vertex colors de-
termined during hole filling.

2. Draw all polygons which are seen in just one view.
3. For each polygon seen in more than one view, calculate its viewing direction for

the desired novel view. Calculate where the novel view falls within the view map,
and then determine the three closest viewing directions and their relative weights.
Render the polygon using alpha-blending of the three textures with projective tex-
ture mapping.

4 Image-Based Rendering with Projective Texture Mapping

Projective texture mapping was introduced in [10] and is now part of the OpenGL graph-
ics standard. Although the original paper used it only for shadows and lighting effects, it
is directly applicable to image-based rendering because it can simulate the inverse pro-
jection of taking photographs with a camera. In order to perform projective texture map-
ping, the user specifies a virtual camera position and orientation, and a virtual image
plane with the texture. The texture is then cast onto a geometric model using the cam-
era position as the center of projection. The focus of this paper is to adapt projective
texture-mapping to take advantage of multiple images of the scene via view-dependent
texture-mapping.

Of course, we should only map a particular image onto the portions of the scene that
are visible from its original camera viewpoint. The OpenGL implementation of projec-
tive texture mapping does not automatically perform such visibility checks; instead a
texture map will project through any amount of geometry and be mapped onto occluded
polygons as seen in Fig. 1. Thus, we need to explicitly compute visibility information
before performing projective texture-mapping.

We could solve the visibility problem in image-space using ray tracing, an item
buffer, or a shadow buffer (as in [2]). However, such methods would require us to com-
pute visibility in image-space for each novel view, which is computationally expensive

Ray

camera

image

geometry

Fig. 1. The current hardware implementation of projective texture mapping in OpenGL lets the
texture pass through the geometry and be mapped onto all backfacing and occluded polygons on
the path of the ray, as can be seen in this rendering of a building on the right. Thus it is necessary to
perform visibility pre-processing so that only polygons visible to a particular camera are texture-
mapped with the corresponding image.

and not suited to interactive applications. Projective texture-mapping is extremely ef-
ficient if we know beforehand which polygons to texture-map, which suggests that we
employ a visibility preprocessing step in object-space to determine which polygons are
visible to which cameras. The next section describes such a visibility preprocessing
method.

5 Determining Visibility

The purpose of our visibility algorithm is to determine for each polygon in the model in
which images it is visible, and to split polygons as necessary so that each is fully visible
or fully invisible to any particular camera. Polygons are clipped to the camera viewing
frustums, to each other, and to user-specified clipping regions. This algorithm operates
in both object space [3, 15] and image space and runs as follows:

1. Assign each original polygon an ID number. If a polygon is subdivided later, all
the smaller polygons generated share the same original ID number.

2. If there are intersecting polygons, subdivide them along the line of intersection.
3. Clip the polygons against all image boundaries and any user-specified clipping

regions so that all resulting polygons lie either totally inside or totally outside the
view frustum and clipping regions.

4. For each camera position, rendering the original polygons of the scene with Z-
buffering using the polygon ID numbers as their colors.

5. For each frontfacing polygon, uniformly sample points and project them onto
the image plane. Retrieve the polygon ID at each projected point from the color
buffer. If the retrieved ID is different from the current polygon ID, the potentially
occluding polygon is tested in object-space to determine whether it is an occluder
or coplanar.

6. Clip each polygon with each of its occluders in object-space.
7. Associate with each polygon a list of photographs to which it is totally visible.

Using identification numbers to retrieve objects from the Z-buffer is similar to the
item buffer technique introduced in [14]. The image-space steps in the algorithm can

quickly obtain the list of occluders for each polygon. Errors due to image-space sam-
pling are largely avoided by checking the pixels in a neighborhood of each projection in
addition to the pixels at the projected sample points.

Our technique also allows the user the flexibility to specify that only a particular
region of an image be used in texture mapping. This is accomplished by specifying an
additional clipping region in step 3 of the algorithm.

Z

C

W

X

Y

camera
B

A

(a) (b)

Fig. 2. (a) To clip a polygon against an occluder, we need to form a pyramid for the occluder with
the apex at the camera position, and then clip the polygon with the bounding faces of the pyramid.
(b) Our algorithm does shallow clipping in the sense that if polygon A occludes polygon B, we only
use A to clip B, and any polygons behind B are unaffected.

The method of clipping a polygon against image boundaries is the same as that of
clipping a polygon against an occluding polygon. In either case, we form a pyramid for
the occluding polygon or image frame with the apex at the camera position (Fig. 2(a)),
and then clip the polygon with the bounding faces of the pyramid. Our algorithm does
shallow clipping in the sense that if polygon A occludes polygon B, we only use A to clip
B, and any polygons behind B are unaffected(Fig. 2(b)). Only partially visible polygons
are clipped; invisible ones are left intact. This greatly reduces the number of resulting
polygons.

If a polygon P has a list of occluders O = fp1; p2; :::; pmg, we use a recursive ap-
proach to do the clipping: First, we obtain the overlapping area on the image plane be-
tween each member of O and polygon P; we then choose the polygon p in O with max-
imum overlapping area to clip P into two parts P0 and S where P0 is the part of P that is
occluded by p, and S is a set of convex polygons which make up the part of P not oc-
cluded by p. We recursively apply the algorithm on each member of S, first detecting its
occluders and then performing the clipping.

To further reduce the number of resulting polygons, we set a lower threshold on the
size of polygons. If the object-space area of a polygon is below the threshold, it is as-
signed a constant color based on the textures of its surrounding polygons. If a polygon
is very small, it is not noticeable whether it is textured or simply a constant color. Fig. 3
shows visibility processing results for two geometric models.

6 Object-Space Hole Filling

No matter how many photographs we have, there may still be some polygons invisible
to all cameras. Unless some sort of coloring is assigned to them, they will appear as
undefined regions when visible in novel views.

Fig. 3. Visibility results for a bell tower model with 24 camera positions and for the university
campus model with 10 camera positions. The shade of each polygon encodes the number of cam-
era positions from which it is visible; the white regions in the overhead view of the second image
are “holes” invisible to all cameras.

Instead of relying on photographic data for these regions, we instead assign colors
to them based on the appearance of their surrounding surfaces, a processed called hole
filling. Previous hole-filling algorithms [16, 2, 7] have operated in image space, which
can cause flickering in animations since the manner in which a hole is filled will not nec-
essarily be consistent from frame to frame. Object-space hole-filling can guarantee that
the derived appearance of each invisible polygon is consistent between viewpoints. By
filling these regions with colors close to the colors of the surrounding visible polygons,
the holes can be made difficult to notice.

Fig. 4. The image on the left exhibits black regions which were invisible to all the original cameras
but not to the current viewpoint. The image on the right shows the rendering result with all the
holes filled. See also Fig. 8.

The steps in hole filling are:

1. Determine polygon connectivity. At each shared vertex, set up a linked list for
those polygons sharing that vertex. In this way, from a polygon, we can access all

its neighboring polygons.
2. Determine colors of visible polygons. Compute an “average” color for each vis-

ible polygon by projecting its centroid onto the image planes of each image in
which it appears and sample the colors at those coordinates.

3. Iteratively assign colors to the holes. For each invisible polygon, if it has not yet
been assigned a color, assign to each of its vertices the color of the closest polygon
which is visible or that has been filled in a previous iteration.

The reason for the iterative step is that an invisible polygon may not have a visible
polygon in its neighborhood. In this way its vertex colors can be determined after its
neighboring invisible polygons are assigned colors.

Due to slight misalignments between the geometry and the original photographs, the
textures of the edges of some objects may be projected onto the background. For exam-
ple, a sliver of the edge of a building may project onto the ground nearby. In order to
avoid filling the invisible areas with these incorrect textures, we do not sample polygon
colors at regions directly adjacent to occlusion boundaries.

Fig. 4 shows the results of hole filling. The invisible polygons, filled will Gouraud-
shaded low-frequency image content, are largely unnoticeable in animations. Because
we assume that the holes will be relatively small and that the scene is mostly diffuse, we
do not use the view-dependent information to render the holes.

7 Constructing and Querying Polygon View Maps

The goal of view-dependent texture-mapping is to always use surface appearance in-
formation sampled from the images which observed the scene closest in angle to the
novel viewing angle. In this way, the errors in rendered appearance due to specular re-
flectance and incorrect model geometry will be minimized. Note that in any particular
novel view, different visible surfaces may have different “best views”; an obvious case
of this is when the novel view encompasses an area not entirely observed in any one
view.

In order to avoid the perceptually distracting effect of surfaces suddenly switching
between different best views from frame to frame, we wish to blend between the avail-
able views as the angle of view changes. This section shows how for each polygon
we create a view map that encodes how to blend between at most three available views
for any given novel viewpoint, with guaranteed smooth image weight transitions as the
viewpoint changes. The view map for each polygon takes little storage and is simple
to compute as a preprocessing step. A polygon’s view map may be queried very effi-
ciently: given a desired novel viewpoint, it quickly returns the set of images with which
to texture-map the polygon and their relative weights.

To build a polygon’s view map, we construct a local coordinate system for the poly-
gon that represents the space of all viewing directions. We then regularly sample the
set of viewing directions, and assign to each of these samples the closest original view
in which the polygon is visible. The view maps are stored and used at rendering time
to determine the three best original views and their blending factors by a quick look-up
based on the current viewpoint.

The local polygon coordinate system is constructed as in Equation 1:

x =

�
yW � n , if yW and n are not collinear,
xW otherwise

y = n � x (1)

where xW and yW are world coordinate system axes, and n is the triangle unit normal.
We transform viewing directions to the local coordinate system as in Fig. 5. We first

obtain v, the unit vector in the direction from the polygon centroid c to the original view
position. We then rotate this vector into the x � y plane of the local coordinate system
for the polygon.

vr = (n � v)� n (2)

This vector is then scaled by the arc length l = cos�1(nT v) and projected onto the x
and y axes giving the desired view mapping.

x = (lvr)
T x

y = (lvr)
T y (3)

rl

Local coordinate system for a

polygon of the model geometry

v

Original view

x

n

y
v

l

x

y

c

Fig. 5. The local polygon coordinate system for constructing view maps.

We pre-compute for each polygon of the model the mapping coordinates pi = (xi; yi)
for each original view i in which the polygon is visible. These points pi represent a sparse
sampling of view direction samples.

To extrapolate the sparse set of original viewpoints, we regularize the sampling of
viewing directions as in Fig. 6. For every viewing direction on the grid, we assign to
it the original view nearest to its location. This new regular configuration is what we
store and use at rendering time. For the current virtual viewing direction we compute
its mapping pvirtual in the local space of each polygon. Then based on this value we do
a quick lookup into the regularly resampled view map. We find the grid triangle inside
which pvirtual falls and use the original views associated with its vertices in the render-
ing (p4, p5, and p7 in the example of Fig. 6). The blending weights are computed as
the barycentric coordinates of pvirtual in the triangle in which it lies. In this manner the
weights of the various viewing images are guaranteed to vary smoothly as the viewpoint
changes.

8 Efficient 3-pass View-Dependent Texture-Mapping

This section explains the implementation of the view-dependent texture-mapping ren-
dering algorithm.

For each polygon visible in more than one original view we pre-compute and store
the viewmaps described in Section 7. Before rendering begins, for each polygon we

1

p
6

p
5

p
3

p
4

p
7

p
2

p
virtual

p

5 x

y

7 7 25

4 3

4 4

34

4

5 6 2

6 1

1

1

Fig. 6. A View Map. The space of viewing directions for each polygon is regularly sampled,
and the closest original view is stored for each sample. To determine the weightings of original
views to be used in a new view, the barycentric coordinates of the novel view within its contain-
ing triangle are used. This guarantees smooth changes of the set of three original views used for
texture mapping when moving the virtual viewpoint. Here, for viewpoint pvirtual , the polygon cor-
responding to this view map will be texture-mapped by an almost evenly weighted combination
of original views p4, p5, and p7, since those are the views assigned to the vertices of pvirtual’s view
map triangle.

find the coordinate mapping of the current viewpoint pvirtual and do a quick lookup to
determine which triangle of the grid it lies within. As explained in Section 7 this returns
the three best original views and their relative weights α1; α2; α3.

Since each VDTM polygon must be rendered with three texture maps, the rendering
is performed in three passes. Texture mapping is enabled in modulate mode, where the
new pixel color C is obtained by multiplying the existing pixel color Cf and the texture
color Ct . The Z-buffer test is set to less than or equal (GL LEQUAL) instead of the default
less than (GL LESS) to allow a polygon to blend with itself as it is drawn multiple times
with different textures. The first pass proceeds by selecting an image camera, binding the
corresponding texture, loading the corresponding texture matrix transformation Mtexture
in the texture matrix stack, and rendering the part of the model geometry for which the
first best camera is the selected one with modulation color (α1; α1; α1). These steps are
repeated for all image cameras. The results of this pass can seen on the tower in Fig.
8 (b). The first pass fills the depth buffer with correct depth values for the entire view.
Before proceeding with the second pass we enable blending in the frame buffer, i.e. in-
stead of replacing the existing pixel values with incoming values, we add those values

together. The second pass then selects cameras and renders polygons for which the sec-
ond best camera is the selected one with modulation color (α2; α2; α2). The results of
the second pass can seen on the tower in Fig. 8 (c). The third pass proceeds similarly,
rendering polygons for which the third best camera is the currently selected one with
modulation color (α3; α3; α3). The results of this last pass can seen on the tower in Fig.
8 (d). Polygons visible from only one original viewpoint are compiled in separate list
and rendered during the first pass with modulation color (1:0; 1:0; 1:0).

The polygons that are not visible in any image cameras are compiled in a separate
OpenGL display list and their vertex colors are specified according to the results of the
hole-filling algorithm. Those polygons are rendered before the first pass with Gouraud
shading after the texture mapping is disabled.

The block diagram in Fig. 7 summarizes the display loop steps.

Disable TM

specifying vertex colors
Render invisible triangles and sky

Load the appropriate M texture

in the texture matrix stack

Perform viewing transformation

Clear color and depth buffers

tC = C Cf)(

Enable blending after
the first pass.

Do not overwrite pixels
in the frame buffer, but

add to their values.

RC T C
0

)(

More original views?

0f, u ,v , w, h, ,

YES

NO

Bind the corresponding image texture

being the currently selected

Enable TM in modulate mode

Repeat 2 more times
for VDTM.

Select an original view

Render all polygons with best view

Fig. 7. The multi-pass view-dependent projective texture mapping rendering loop.

9 Discussion and Future Work

The presented method was effective at realistically rendering a relatively large-scale
image-based scene at interactive rates on standard graphics hardware. Using relatively
unoptimized code, we were able to achieve 20 frames per second on a Silicon Graphics
InfiniteReality for the full tower and campus models. Nonetheless, many aspects of this
work should be regarded as preliminary in nature. One problem with the technique is
that it ignores the spatial resolution of the original images in its selection process – an
image that shows a particular surface at very low resolution but at just the right angle
would be given greater weighting than a high-resolution image from a slightly different
angle. Having the algorithm blend between the images using a multiresolution image
pyramid would allow low-resolution images to influence only the low-frequency con-
tent of the renderings. However, it is less clear how this could be implemented using
standard graphics hardware.

While the algorithm guarantees smooth texture weight transitions as the viewpoint
moves, it does not guarantee that the weights will transition smoothly across surfaces of
the scene. As a result, seams can appear in the renderings where neighboring polygons
are rendered with very different combinations of images. The problem is most likely to
be noticeable near the frame boundaries of the original images, or near a shadow bound-
ary of an image, where polygons lying on one side of the boundary include an image in
their view maps but the polygons on the other side do not. [2] and [9] suggest feath-
ering the influence of images in image-space toward their boundaries and near shadow
boundaries to reduce the appearance of such seams; with some consideration this tech-
nique should be adaptable to the object-space method presented here.

The algorithm as we have presented it requires all the available images of the scene
to fit within the main memory of the rendering computer. For a very large-scale en-
vironment, this is unreasonable to expect. To solve this problem, spatial partitioning
schemes [13], image caching [11], and impostor manipulation [11, 12] techniques could
be adapted to the current framework.

As we have presented the algorithm, it is only appropriate for models that can be
broken into polygonal patches. The algorithm can also work for curved surfaces (such
as those acquired by laser scanning); these surfaces would be need to be broken down by
the visibility algorithm until they are seen without self-occlusion by their set of cameras.

Lastly, it seems as if it would be more efficient to analyze the set of available views of
each polygon and distill a unified view-dependent function of its appearance, rather than
the raw set of original views. One such representation is the Bidirectional Texture Func-
tion, presented in [1], or a yet-to-be-presented form of geometry-enhanced light field.
Such a technique will require new rendering methods in order to render the distilled rep-
resentations in real time. Lastly, extensions of techniques such as model-based stereo [2]
might be able to perform a better job of interpolating between the various views than lin-
ear interpolation.

Images and Animations

Images and Animations of the Berkeley campus model may be found at:
http://www.cs.berkeley.edu/~debevec/Campanile

Acknowledgments

The authors wish to thank Jason Luros, Vivian Jiang, Chris Wright, Sami Khoury,
Charles Benton, Tim Hawkins, Charles Ying, Jitendra Malik, and Camillo Taylor for
their contributions to the Berkeley Campus Animation. This research was supported by
Silicon Graphics and a Multidisciplinary University Research Initiative on 3D Direct
visualization from ONR and BMDO, grant FDN00014-96-1-1200.

References

1. DANA, K. J., GINNEKEN, B., NAYAR, S. K., AND KOENDERINK, J. J. Reflectance and
texture of real-world surfaces. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog. (1997),
pp. 151–157.

2. DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. Modeling and rendering architecture from
photographs: A hybrid geometry- and image-based approach. In SIGGRAPH ’96 (August
1996), pp. 11–20.

3. FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F. Computer Graphics:
principles and practice. Addison-Wesley, Reading, Massachusetts, 1990.

4. GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. The Lumigraph.
In SIGGRAPH ’96 (1996), pp. 43–54.

5. LAVEAU, S., AND FAUGERAS, O. 3-D scene representation as a collection of images. In
Proceedings of 12th International Conference on Pattern Recognition (1994), vol. 1, pp. 689–
691.

6. LEVOY, M., AND HANRAHAN, P. Light field rendering. In SIGGRAPH ’96 (1996), pp. 31–
42.

7. MARK, W. R., MCMILLAN, L., AND BISHOP, G. Post-rendering 3D warping. In Pro-
ceedings of the Symposium on Interactive 3D Graphics (New York, Apr.27–30 1997), ACM
Press, pp. 7–16.

8. MCMILLAN, L., AND BISHOP, G. Plenoptic Modeling: An image-based rendering system.
In SIGGRAPH ’95 (1995).

9. PULLI, K., COHEN, M., DUCHAMP, T., HOPPE, H., SHAPIRO, L., , AND STUETZLE,
W. View-based rendering: Visualizing real objects from scanned range and color data. In
Proceedings of 8th Eurographics Workshop on Rendering, St. Etienne, France (June 1997),
pp. 23–34.

10. SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J., AND HAEBERLI, P. Fast
shadows and lighting effects using texture mapping. In SIGGRAPH ’92 (July 1992), pp. 249–
252.

11. SHADE, J., LISCHINSKI, D., SALESIN, D., DEROSE, T., AND SNYDER, J. Hierarchical
image caching for accelerated walkthroughs of complex environments. In SIGGRAPH 96
Conference Proceedings (1996), H. Rushmeier, Ed., Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 75–82.

12. SILLION, F., DRETTAKIS, G., AND BODELET, B. Efficient impostor manipulation for real-
time visualization of urban scenery. Computer Graphics Forum (Proc. Eurographics 97) 16,
3 (Sept. 4–8 1997), C207–C218.

13. TELLER, S. J., AND SEQUIN, C. H. Visibility preprocessing for interactive walkthroughs.
In SIGGRAPH ’91 (1991), pp. 61–69.

14. WEGHORST, H., HOOPER, G., AND GREENBERG, D. P. Improved computational methods
for ray tracing. ACM Transactions on Graphics 3, 1 (January 1984), 52–69.

15. WEILER, K., AND ATHERTON, P. Hidden surface removal using polygon area sorting. In
SIGGRAPH ’77 (1977), pp. 214–222.

16. WILLIAMS, L., AND CHEN, E. View interpolation for image synthesis. In SIGGRAPH ’93
(1993).

(b) (d)

(a) (c)

Fig. 8. The different view-dependent projective texture-mapping passes in producing a frame of
the Berkeley campus virtual fly-by. The complete model contains approximately 100,000 trian-
gles. (a) The campus buildings and terrain after hole-filling; these areas were seen from only one
viewpoint and are thus rendered before the VDTM passes. (b) The Berkeley tower after the first
pass of view-dependent texture mapping. (c) The Berkeley tower after the second pass of view-
dependent texture mapping. (d) The complete rendering after all three VDTM passes.

