Image or Object?

Michael F. Cohen
Microsoft Research

Is this real?

Photo by Patrick Jennings (patrick@synaptic.bc.ca), Copyright 1995, 96, 97 Whistler B. C. Canada
A mental model

Sue Vision
Is this real?

Bob Graphics
Computer Graphics Meets Computer Vision
But, vision technology falls short
… and so does graphics.

Image Based Rendering

Output
Image

Synthetic Camera

Model

Real Scene

Real Cameras

Images + Model

Real Scene

Real Cameras

-or-

Expensive Image Synthesis
Ray

- Constant radiance
 - time is fixed

- 5D
 - 3D position
 - 2D direction

All Rays

- Plenoptic Function
 - all possible images
 - too much stuff!
Line

- Infinite line

Ray

- Discretize

- Distance between 2 rays
 - Which is closer together?

- 4D
 - 2D direction
 - 2D position
What is an image?

- All rays through a point
 - Panorama?

- 2D
 - position of rays has been fixed
 - direction remains
Object

- Light leaving towards “eye”

- 2D
 - just dual of image

Object

- All light leaving object
Object

θ 4D
- 2D position
- 2D direction

Object

θ All images
Object

Too Hard

Plenoptic Function

5D
Rays
Lumigraph

- How to
 - organize
 - capture
 - render

Lumigraph - Organization

- 2D position
- 2D direction

\[\theta \]
Lumigraph - Organization

- 2D position
- 2D position
- 2 plane parameterization
Lumigraph - Organization

- Hold s,t constant
- Let u,v vary
- An image

Lumigraph - Organization

- Discretization
 - higher res near object
 - if diffuse
 - captures texture
 - lower res away
 - captures directions
Lumigraph - Capture

Idea 1
- Move camera carefully over s,t plane
- Gantry
 - see Lightfield paper

Lumigraph - Capture

Idea 2
- Move camera anywhere
- Rebinning
 - see Lumigraph paper
Lumigraph - Rendering

- For each output pixel
 - determine s,t,u,v
 - either
 - find closest discrete RGB
 - interpolate near values
Lumigraph - Rendering

- Nearest
 - closest s
 - closest u
 - draw it

- Blend 16 nearest
 - quadrilinear interpolation

Lumigraph - Rendering

- Depth Correction
 - closest s
 - intersection with “object”
 - best u
 - closest u
Lumigraph - Rendering

- Depth Correction
 - quadralinear interpolation
 - new “closest”
 - like focus

- Fast s,t,u,v finding
 - scanline interpolate
 - texture mapping
 - shear warp
Lumigraph - Rendering

- Fast s,t,u,v finding
 - scanline interpolate
 - texture mapping
 - shear warp

{s1,u1, s2,u2}
Lumigraph - Rendering

- Fast s,t,u,v finding
 - scanline interpolate
 - texture mapping
 - shear warp

Lumigraph - Demo

- Lumigraph
 - Lion, Fruit Bowl, Visible Woman, Path Tracing
Lightfield - Demo

- Digital Michelangelo Project
 - Marc Levoy, Stanford University
 - Lightfield (“night”) assembled by Jon Shade

3D Representations

- Image is 2D
- Lumigraph is 4D
- What happened to 3D?
 - 3D Lumigraph subset
 - Concentric mosaics
3D Lumigraph

- **One row of s,t plane**
 - i.e., hold t constant

- Thus s,u,v
- A "row of images"
Concentric Mosaics

- Replace “row” with “circle” of images
Concentric Mosaics

- From above

Concentric Mosaics

- From above
Concentric Mosaics

- Panorama

2.5D Representations

- Image is 2D
- Lumigraph is 4D
- 3D
 - 3D Lumigraph subset
 - Concentric mosaics
- 2.5D
 - Layered Depth Images
 - View Dependent Surfaces
Layered Depth Image

2.5 D?

Layered Depth Image

Layered Depth Image

Rendering from LDI

- Incremental in LDI X and Y
- Guaranteed to be in back-to-front order
Layered Depth Image

- Rendering from LDI
 - Incremental in LDI X and Y
 - Guaranteed to be in back-to-front order
Layered Depth Image

From multiple input images:
- determine geometry
- with user’s help
- view dependent texture

View Dependent Surfaces
View Dependent Surfaces

Summary

- 5D: Plenoptic Function (Ray)
- 4D: Lumigraph / Lightfield
- 3D: Lumigraph Subset
- 3D: Concentric Mosaics
- 2.5D: Layered Depth Image
- 2.5D: View Dependent Models
- 2D: Image
Thanks

- Peter-Pike Sloan (Lumigraph)
- Jonathan Shade (Lightfield, LDI)
- Marc Levoy, Stanford University
 - Michaelangelo data set