Determining Geometry from Images

Richard Szeliski
Microsoft Research

SIGGRAPH Course on Image-Based Modeling, Rendering, and Lighting
August 10, 1999

Computer Vision

Computer Vision is the inverse of Computer Graphics:

- computer graphics:
- given a 3D model, render it
- computer vision
- given some images, create a 3D model

This talk describes some techniques for recovering 3D geometry from images.

Motivation

- model building for virtual reality, animation, and CAD is slow and tedious
- animators and designers want photorealistic (texture-mapped) models
- video input, display, and processing hardware becoming ubiquitous(multimedia)
- computer vision algorithms becoming more mature and reliable

Applications

- recover camera location to superimpose graphics on image [Gleicher 92]
- extract texture maps from real world [Beardsley96, Debevec96]
- create a 3-D model object or world model, without extensive interactive modeling

Applications (example)

- 3D model building example

octree
3D curves texture-mapped

Outine

- camera calibration
- pose estimation (view correlation)
- triangulation
- structure from motion
- feature matching (correlation)
- stereo matching (dense shape estimates)
- volumes (octrees) from silhouettes
- surface curves from profiles
- inverse texture mapping
- applications

Camera calibration

- determine camera internal (focal length) and external (pose) parameters from known 3D points
- forward projection equations

Camera matrix calibration

- directly estimate 11 unknowns in 3×4
matrix projecting $3 \mathrm{D} \Rightarrow 2 \mathrm{D}$

- bring denominator over, solve set of linear equations

Camera matrix calibration

- Advantages:
- very simple to formulate and solve
- Disadvantages:
- doesn't compute internal parameters
- more unknowns than true degrees of freedom
- need a separate camera matrix for each new view

Pose estimation

- once the internal camera parameters are known, can compute camera pose
- application: superimpose 3D graphics onto video
- possible solution techniques:
- use standard calibration code [Tsai87]
- use view correlation [Bogart91]
- use through the lens camera control [Gleicher92]
- other techniques from computer vision

Triangulation (Stereo)

- Problem: Given some points in correspondence across two or more images (taken from calibrated cameras), $\left\{\left(\mathrm{u}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}}\right)\right\}$, compute the 3D location \mathbf{X}

Triangulation (Stereo)

- Method I: intersect viewing rays in 3D, minimize:

- \mathbf{X} is the unknown 3D point
$-\mathbf{C}_{j}$ is the optical center of camera j
$-\mathbf{V}_{j}$ is the viewing ray for pixel $\left(u_{j}, v_{j}\right)$
$-s_{j}$ is unknown distance along \mathbf{V}_{j}
advantage: geometrically intuitive

Triangulation (con't)

- Method II: solve linear equations in \mathbf{X}
- advantage: very simple
- Method III: non-linear minimization
- advantage: most accurate (image plane error)

Structure from motion

- Given many points in correspondence across several images, $\left\{\left(u_{i j}, v_{i j}\right)\right\}$, simultaneously compute the 3D location \mathbf{X}_{i} and camera (or motion) parameters \mathbf{M}_{j}
- two main variants: calibrated, and uncalibrated (sometimes associated with Euclidean and projective reconstructions)
- long history of research algorithms [Longuet81,Tomasi92,Weng93a,Szeliski94e,Beardsley96a]

Structure from motion (con't)

- Simple iterative algorithm used for face reconstruction[Pighin98] assuming roughly known geometry and pose
- assume $\left(u_{c}, v_{c}\right)=(0,0)$, but f is unknown

where $\eta_{j}=1 / \mathbf{t}_{j}^{z}$ is the inverse distance to object, and $s_{j}=f_{j} / \mathbf{t}_{j}{ }^{z}$ is a world-pixel scale factor
- advantage: works well for narrow fields of view when f and $\mathbf{t}_{j}{ }^{z}$ are hard to estimate

Structure from motion (con't)

- bring denominator over to l.h.s.
\bullet iteratively solve for: $s_{j}, \mathbf{X}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}{ }^{x}$ and $\mathbf{t}_{j}{ }^{y}, \eta_{j}$
- all equations are linear, except for \mathbf{R}_{j}, which is linearized by using a small angle (instantaneous velocity) approximation

Structure from motion (example)

- automatically track points in video sequence, validate consistant matches, and build 3D structure from point tracks [Beardsley96a]
- uses both points and lines for reconstruction
- final output is texture-mapped model

Structure from motion: limitations

- very difficult to reliably estimate structure and motion unless:
- large (x or y) rotation or
- large field of view and depth variation
- camera calibration important for Euclidean reconstructions
- need good feature trackers
- postprocessing of the resulting 3-D points?

Feature matching (correlation)

- Find corresponding points in image video sequence
- one simple technique: find two patches with minimal summed squared error[Anandan89]
$E_{x y}(u, v)=\sum_{k=x-w}^{x+w} \sum_{l=y-w}^{v+w}\left[I_{1}(k+u, l+v)-I_{0}(k, l)\right]^{2}$

Feature matching (optic flow)

- need sub-pixel precision to get best registration
- solution: Taylor series expansion of image function [Lucas81a]

$$
E(\mathbf{u}+\delta \mathbf{u})=\sum_{i}\left(e_{i}+g_{i} \cdot \delta \mathbf{u}\right)^{2}
$$

where $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{u}, e_{i}=I_{l}\left(\mathbf{x}^{\prime}\right)-I_{0}(\mathbf{x}), \mathbf{g}_{i}=$ $\nabla I_{l}\left(\mathbf{x}^{\prime}\right)$

Feature matching (optic flow)

- solve 2×2 system

- use a coarse-to-fine pyramid to speed up search [Bergen92a]
- related to Brightness Constancy Equation [Horn81]

$$
I_{x} u+I_{y} v-I_{t}=0
$$

Stereo: epipolar geometry

- Match features along epipolar lines

Stereo: epipolar geometry

- for two images (or images with collinear camera centers), can find epipolar lines
- epipolar lines are the projection of the pencil of planes passing through the centers
- rectification: warping the input images (perspective transformation) so that epipolar lines are horizontal [Faugeras ‘93; Loop \& Zhang '99]

Stereo: dense depth

- apply feature matching criterion at all pixels simultaneously
- search only over epipolar lines (many fewer candidate positions)

can also match features such as lines

Stereo: hierarchical matching

- Use coarse-to-fine search in an image pyramid to handle larger displacements [Bergen et al.'92]

Stereo: certainty modeling

- Compute certainty map from correlations

input

depth map

certainty map

Stereo: dense depth

- recovered depth map can be used for view
interpolation [Chen93,Szeliski95,Seitz96]

input

depth image

novel view
[Matthies,Szeliski,Kanade'88]

Dense Stereo Matching

- Advantages:

- gives detailed surface estimates
- multi-view aggregation improves accuracy
- Limitations:
- narrow baseline \Rightarrow noisy estimates
- fails in textureless areas
- sparse, incomplete surface
- sensitive to non-Lambertian effects

Stereo matching: limitations

- problems at and near occlusions
- incorrect color extraction, no partial occupancy in (mixed) border pixels

- solution: simultaneously recover disparities, colors, and opacities

Multi-Image Scene Recovery

- Goals of new stereo algorithm
- simultaneously recover disparities, colors, and opacities (c.f. blue screen matting)
- explicitly handle occlusions
- true multi-frame setting [Collins, CVPR'96]
- details in [Szeliski \& Golland, ICCV'98]

Plane Sweep Stereo

- Sweep family of planes through volume

- each plane defines an image \Rightarrow composite homography

Plane Sweep Stereo

- For each depth plane
- compute composite (mosaic) image - mean

- compute error image - variance
- convert to confidence and aggregate spatially
- Select winning depth at each pixel

Plane Sweep Stereo

*"Stack of acetates" model (related to LDI)

- warp and composite (over) back-to-front

Plane Sweep Stereo

- Compute visibility each input/layer pair

- Recompute means, confidences, and opacities

Voxel Coloring

- Generalizes plane sweep camera geometry
- replace plane sweep with surface sweep [Seitz \& Dyer, CVPR'97][Kutalakos \& Seitz]

Voxel Coloring

- Results for dinosaur and rose

7

Stereo with Matting

- Estimate fractional opacities for pixels
- adjust layer "sprites" (colors and opacities) to best match input images
- optimization criteria:
- re-synthesis error
- color and opacity smoothness
- prior distribution on opacities
- corresponds to MAP Bayesian estimator

Stereo with Matting

- SRI Trees sequence example

Stereo with Matting

- Advantages:
- true multi-image matching
- deals with occlusions and mixed pixels
- Limitations:
- too many degrees of freedom (volume)
- breaks up surfaces into "voxels"
- no "sub-pixel" depths

Layered Stereo

- Use arbitrarily oriented sprites

[Baker,Szeliski,Anandan'98]

- Estimate 3D plane equation for each sprite

Layered Stereo

- Assign pixel to different "layers" (objects, sprites)

Layered Stereo

- Track each layer from frame to frame, compute plane eqn. and composite mosaic

- Re-compute pixel assignment by comparing original images to sprites

Layered Stereo

- Resulting sprite collection

Layered Stereo

- Re-synthesize original or novel images from collection of sprites

Layered Stereo Demo

- SpriteViewer: renders sprites with depth

Layered Stereo

- Per-pixel residual depth estimation
- plane plus parallax [Anandan et al.]
- model-based stereo [Debevec et al.]

- better accuracy / fidelity
- makes forward warping more difficult

Layered Stereo

- Advantages:
- can represent occluded regions
- can represent transparent and border (mixed) pixels (sprites have alpha value per pixel)
- works on texture-less interior regions
- Limitations:
- fails for high depth-complexity scenes
- may need manual initialization / control

Volumes from silhouettes

- extract binary silhouette of object photographed against known background
- each silhouette + camera center defines enclosing conic region of space
- intersection of cones \Rightarrow bounding volume
- use octree representation of volume for efficiency [Szeliski93h]

Volumes from silhouettes

Cup on turntable example

Volumes from silhouettes

- Advantages:
- simple to implement, fairly robust
- fast execution
- complete (closed) surface
- Disadvantages:
- only produces line hull
- limited resolution
- sensitive to classification (thresholding)

Surface curves from profiles

- extract and link edges in each image
- match edges across image sequence
- infer 3-D location from 2 or more matched edges:
- for stationary edge (surface marking, sharp crease), use regular triangulation
- for smooth self-occluding profile (limb), use 3 or more edges, fit circular arc [Szeliski94]

Surface curves from profiles

Coffee jar example

Surface curves from profiles

- Advantages:
- correct estimates at occluding contours
- good for smoothly curved objects
- provides intrinsic surface estimates, piecewise continuous surface mesh
- works on interior surface markings
- Disadvantages:
- fails in textureless interior areas
- incomplete surface (not closed)

Inverse texture mapping (photometry)

- recover color distribution over shape
- undo shading effects:
- diffuse illumination
- single source Lambertian
weight contribution by surface normal
- smooth (and sharpen) results
[Yu \& Malik; Debevec]

Application: 3D face model building [Pighin98a]

- take several photos of a face from different views
- identify key points (eye and mouth corners, nose tip, ...) in each image
- recover camera position and coarse geometry using structure from motion
- add more correspondences, refine geometry, and interpolate to the rest of the mesh

Application: 3D face model building [Pighin98a]

recover cylindrical texture map

- refine shape estimates using stereo
animate by morphing between expressions

3D face model-based tracking

- Use "analysis by synthesis" to match 3D face model parameters to input video

3D model-based effects

- Change viewpoint, identity, illumination, or add special effects (scars, tatoos, ...)

Applications

- industrial applications
- CAD/CAM
- "3D Fax": collaborative design
- architecture
- biomedical (surgery, prostheses)
- special effects (FX), virtual studio
- fashion \& clothing

Applications

- consumer applications:
- 3D world building (travel, home sales, home page, ...)
- 3D model construction (art, hobby, ..)
- 3D avatar construction (heads)
- "3D videophone"

To find out more

general references on computer vision:
[Ballard82,Horn86,Faugeras93,Nalwa93]

- recent survey of (some) 3D modeling techniques [Szeliski97]
- Computer Vision Home Page:
http://www.cs.cmu.edu/afs/cs/ project/cil/ftp/html/vision.html
- Workshop on Image-Based Modeling and Rendering: http://graphics.stanford.edu/workshops/ibr98/

Bibliography

O. Faugeras, Three-dimensional computer vision: A geometric viewpoint, MIT Press, Cambridge, Massachusetts, 1993.
L. H. Matthies, R. Szeliski, and T. Kanade. Kalman filter-based algorithms for estimating depth from image sequences. International Journal of Computer Vision, 3:209-236, 1989.
J. R. Bergen, P. Anandan, K. J. Hanna, and R, Hingorani. Hierarchical Model-Based Motion Estimation. In Second European Conference on Computer Vision (ECCV'92), pages 234-252, May 1992.
R. T. Collins, A Space-Sweep Approach to True Multi-Image Matching, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'96) , pages 358-363, June 1996.
S. M. Seitz and C. R. Dyer, Photorealistic Scene Reconstrcution by Space Coloring, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'97), pages 1067-1073, June 1997.

Bibliography

R. Szeliski. From images to models (and beyond): a personal retrospective. In Vision Interface '97, pages 126-137, Kelowna, British Columbia, May 1997. Canadian Image Processing and Pattern Recognition Society.
R. Szeliski and P. Golland. Stereo matching with transparency and matting. In Sixth International Conference on Computer Vision (ICCV'98), pages 517-524, Bombay, January 1998.
R. Szeliski and R. Weiss. Robust shape recovery from occluding contours using a linear smoother. International Journal of Computer Vision, 28(1):27-44, June 1998.
S. Baker, R. Szeliski, and P. Anandan. A layered approach to stereo reconstruction. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'98), pages 434-441, Santa Barbara, June 1998.

