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Computer Vision

Computer Vision is the inverse of Computer
Graphics:

◆ computer graphics:
– given a 3D model, render it

◆ computer vision
– given some images, create a 3D model

This talk describes some techniques for
recovering 3D geometry from images.
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Motivation

◆ model building for virtual reality, animation,
and CAD is slow and tedious

◆ animators and designers want photo-
realistic (texture-mapped) models

◆ video input, display, and processing
hardware becoming ubiquitous(multimedia)

◆ computer vision algorithms becoming more
mature and reliable
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Applications

◆ recover camera location to superimpose
graphics on image [Gleicher 92]

◆ extract texture maps from real world
[Beardsley96, Debevec96]

◆ create a 3-D model object or world model,
without extensive interactive modeling



Richard Szeliski  -  Determining Geometry from Images 3
3-3

SIGGRAPH'99 Course on Image-Based Modeling, Rendering, and Lighting 5

Applications (example)

◆ 3D model building example

 octree         3D curves     texture-mapped

SIGGRAPH'99 Course on Image-Based Modeling, Rendering, and Lighting 6

Outline

◆ camera calibration
◆ pose estimation (view correlation)
◆ triangulation
◆ structure from motion
◆ feature matching (correlation)
◆ stereo matching (dense shape estimates)
◆ volumes (octrees) from silhouettes
◆ surface curves from profiles
◆ inverse texture mapping
◆ applications
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Camera calibration

◆ determine camera internal (focal length)
and external (pose) parameters from known
3D points

◆ forward projection equations
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Camera matrix calibration

◆ directly estimate 11 unknowns in 3×4
matrix projecting 3D ⇒ 2D

◆ bring denominator over, solve set of linear
equations
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Camera matrix calibration

◆ Advantages:
– very simple to formulate and solve

◆ Disadvantages:
– doesn't compute internal parameters

– more unknowns than true degrees of freedom

– need a separate camera matrix for each new
view
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Pose estimation

◆ once the internal camera parameters are
known, can compute camera pose

◆ application: superimpose 3D graphics onto
video

◆ possible solution techniques:
– use standard calibration code [Tsai87]
– use view correlation [Bogart91]
– use through the lens camera control [Gleicher92]

– other techniques from computer vision
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Triangulation (Stereo)

◆ Problem:  Given some points in
correspondence across two or more images
(taken from calibrated cameras), {(uj,vj)},
compute the 3D location X

SIGGRAPH'99 Course on Image-Based Modeling, Rendering, and Lighting 12

Triangulation (Stereo)

◆ Method I: intersect viewing rays in 3D,
minimize:

– X is the unknown 3D point
– Cj is the optical center of camera j
– V j is the viewing ray for pixel (uj,vj)
– sj is unknown distance along V j

◆ advantage: geometrically intuitive

arg min min|| ||
X

C V X
s

j j j
j j

s+ −∑ 2
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Triangulation (con't)

◆ Method II : solve linear equations in X
– advantage: very simple

◆ Method III: non-linear minimization

– advantage: most accurate (image plane error)
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Structure from motion
◆ Given many points in correspondence across

several images, {(uij,vij)}, simultaneously
compute the 3D location X i and camera (or
motion) parameters M j

◆ two main variants: calibrated, and
uncalibrated (sometimes associated with
Euclidean and projective reconstructions)

◆ long history of research algorithms
[Longuet81,Tomasi92,Weng93a,Szeliski94e,Beardsley96a]
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Structure from motion (con't)
◆ Simple iterative algorithm used for face

reconstruction[Pighin98] assuming roughly
known geometry and pose
– assume (uc,vc) = (0,0), but f is unknown

where ηj = 1/t j
z is the inverse distance to object,

and sj = fj/t j
z is a world-pixel scale factor

◆ advantage: works well for narrow fields of
view when f and t j

z are hard to estimate
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Structure from motion (con't)

◆ bring denominator over to l.h.s.

◆ iteratively solve for: sj, X i, Rj, t j
x and t j

y, ηj

◆ all equations are linear, except for Rj, which
is linearized by using a small angle
(instantaneous velocity) approximation
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Structure from motion
(example)

◆ automatically track points in video sequence,
validate consistant matches, and build 3D
structure from point tracks [Beardsley96a]

◆ uses both points and lines for reconstruction

◆ final output is texture-mapped model
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Structure from motion:
limitations

◆ very difficult to reliably estimate structure
and motion unless:
– large (x or y) rotation  or
– large field of view and depth variation

◆ camera calibration important for Euclidean
reconstructions

◆ need good feature trackers
◆ postprocessing of the resulting 3-D points?
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Feature matching (correlation)
◆ Find corresponding points in image video

sequence
– one simple technique: find two patches with

minimal summed squared error[Anandan89]
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Feature matching (optic flow)

◆ need sub-pixel precision to get best
registration

◆ solution: Taylor series expansion of image
function [Lucas81a]

where x' = x+u, ei = I1(x') - I0(x), gi =
∇I1(x')

E e gi i
i

( )u u u+ = + ⋅∑δ δ1 6
2
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Feature matching (optic flow)

◆ solve 2×2 system

◆ use a coarse-to-fine pyramid to speed up
search [Bergen92a]

◆ related to Brightness Constancy Equation
[Horn81]
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Stereo: epipolar geometry

◆ Match features along epipolar lines

viewing rayepipolar plane

epipolar line
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Stereo: epipolar geometry

◆ for two images (or images with collinear
camera centers), can find epipolar lines

◆ epipolar lines are the projection of the
pencil of planes passing through the centers

◆ rectification:   warping the input images
(perspective transformation) so that epipolar
lines are horizontal [Faugeras ‘93; Loop & Zhang ‘99]
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Stereo: dense depth
◆ apply feature matching criterion at all pixels

simultaneously
◆ search only over epipolar lines (many fewer

candidate positions)

◆ can also match features such as lines
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Stereo: hierarchical matching

◆ Use coarse-to-fine search in an image
pyramid to handle larger displacements
[Bergen et al.'92]

coarse

medium

fine
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Stereo: certainty modeling

◆ Compute certainty map from correlations

    input   depth map       certainty map
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Stereo: dense depth
◆ recovered depth map can be used for view

interpolation [Chen93,Szeliski95,Seitz96]

input depth image novel view
 [Matthies,Szeliski,Kanade’88]
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Dense Stereo Matching

◆ Advantages:
– gives detailed surface estimates
–  multi-view aggregation improves accuracy

◆ Limitations:
– narrow baseline ⇒ noisy estimates
– fails in textureless areas
– sparse, incomplete surface
– sensitive to non-Lambertian effects
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Stereo matching: limitations
◆ problems at and near occlusions
◆ incorrect color extraction, no partial

occupancy in (mixed) border pixels

◆ solution: simultaneously recover disparities,
colors, and opacities
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Multi-Image Scene Recovery

◆ Goals of new stereo algorithm

– simultaneously recover disparities, colors, and

opacities (c.f. blue screen matting)

–  explicitly handle occlusions

–  true multi-frame setting [Collins, CVPR’96]

– details in [Szeliski & Golland, ICCV’98]
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Plane Sweep Stereo
◆ Sweep family of planes through volume

– each plane defines an image ⇒ composite homography

virtual camera

composite
input image

 ← projective re-sampling of (X,Y,Z)
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Plane Sweep Stereo

◆ For each depth plane
– compute composite (mosaic) image — mean

– compute error image — variance
– convert to confidence and aggregate spatially

◆ Select winning depth at each pixel
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Plane Sweep Stereo

◆ “Stack of acetates” model (related to LDI)

– warp and composite (over) back-to-front

layers (“sprites”)

synthesized image
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Plane Sweep Stereo

◆ Compute visibility each input/layer pair

◆ Recompute means, confidences, and opacities

input image

layer composite
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Voxel Coloring

◆ Generalizes plane sweep camera geometry
– replace plane sweep with surface sweep

[Seitz & Dyer, CVPR’97][Kutalakos & Seitz]
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Voxel Coloring

◆ Results for dinosaur and rose
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Stereo with Matting

◆ Estimate fractional opacities for pixels
– adjust layer “sprites” (colors and opacities) to

best match input images

– optimization criteria:
✦ re-synthesis error

✦ color and opacity smoothness

✦ prior distribution on opacities

– corresponds to MAP Bayesian estimator
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Stereo with Matting

◆ SRI Trees sequence example

     input images        stereo layers



Richard Szeliski  -  Determining Geometry from Images 20
3-20

SIGGRAPH'99 Course on Image-Based Modeling, Rendering, and Lighting 39

Stereo with Matting

◆ Advantages:
– true multi-image matching

–  deals with occlusions and mixed pixels

◆ Limitations:
– too many degrees of freedom (volume)

– breaks up surfaces into “voxels”

– no “sub-pixel” depths
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Layered Stereo

◆ Use arbitrarily oriented sprites
[Baker,Szeliski,Anandan’98]

◆ Estimate 3D plane equation for each sprite

layers (“sprites”)
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Layered Stereo

◆ Assign pixel to different “layers” (objects,
sprites)
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Layered Stereo
◆ Track each layer from frame to frame,

compute plane eqn. and composite mosaic

◆ Re-compute pixel assignment by comparing
original images to sprites
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Layered Stereo

◆ Resulting sprite collection
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Layered Stereo

◆ Re-synthesize original or novel images from
collection of sprites
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Layered Stereo Demo

◆ SpriteViewer: renders sprites with depth
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Layered Stereo
◆ Per-pixel residual depth estimation

– plane plus parallax [Anandan et al.]
– model-based stereo [Debevec et al.]

– better accuracy / fidelity
– makes forward warping more difficult
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Layered Stereo

◆ Advantages:
– can represent occluded regions

– can represent transparent and border (mixed)
pixels (sprites have alpha value per pixel)

– works on texture-less interior regions

◆ Limitations:
– fails for high depth-complexity scenes

– may need manual initialization / control
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Volumes from silhouettes

◆ extract binary silhouette of object
photographed against known background

◆ each silhouette + camera center defines
enclosing conic region of space

◆ intersection of cones ⇒ bounding volume
◆ use octree representation of volume for

efficiency [Szeliski93h]
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Volumes from silhouettes

Cup on turntable example
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Volumes from silhouettes

◆ Advantages:
– simple to implement, fairly robust

– fast execution

– complete (closed) surface

◆ Disadvantages:
– only produces line hull

– limited resolution

– sensitive to classification (thresholding)
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Surface curves from profiles

◆ extract and link edges in each image

◆ match edges across image sequence

◆ infer 3-D location from 2 or more matched
edges:
–  for stationary edge (surface marking, sharp

crease), use regular triangulation

– for smooth self-occluding profile (limb), use 3
or more edges, fit circular arc [Szeliski94]
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Surface curves from profiles

Coffee jar example
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Surface curves from profiles

◆ Advantages:
– correct estimates at occluding contours
– good for smoothly curved objects
– provides intrinsic surface estimates, piecewise

continuous surface mesh
– works on interior surface markings

◆ Disadvantages:
– fails in textureless interior areas
– incomplete surface (not closed)
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Inverse texture mapping
(photometry)

◆ recover color distribution over shape

◆ undo shading effects:
– diffuse illumination

– single source Lambertian

◆ weight contribution by surface normal

◆ smooth (and sharpen) results
[Yu & Malik; Debevec]
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Application: 3D face model
building [Pighin98a]

◆ take several photos of a face from different
views

◆ identify key points (eye and mouth corners,
nose tip, ...) in each image

◆ recover camera position and coarse
geometry using structure from motion

◆ add more correspondences, refine geometry,
and interpolate to the rest of the mesh
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Application: 3D face model
building [Pighin98a]

◆ recover cylindrical texture map

◆ refine shape estimates using stereo

◆ animate by morphing between expressions
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3D face model-based tracking

◆ Use “analysis by synthesis” to match 3D
face model parameters to input video
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3D model-based effects

◆ Change viewpoint, identity, illumination, or
add special effects (scars, tatoos, …)
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Applications

◆ industrial applications
– CAD/CAM

– “3D Fax”: collaborative design

– architecture

– biomedical (surgery, prostheses)

– special effects (FX), virtual studio

– fashion & clothing

SIGGRAPH'99 Course on Image-Based Modeling, Rendering, and Lighting 62

Applications

◆ consumer applications:
– 3D world building (travel, home sales, home

page, ...)

– 3D model construction (art, hobby, ..)

– 3D avatar construction (heads)

– “3D videophone”
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Applications: panoramas

+
+

+ …...
+

+
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To find out more

◆ general references on computer vision:
[Ballard82,Horn86,Faugeras93,Nalwa93]

◆ recent survey of (some) 3D modeling
techniques [Szeliski97]

◆ Computer Vision Home Page:
http://www.cs.cmu.edu/afs/cs/ project/cil/ftp/html/vision.html

◆ Workshop on Image-Based Modeling and
Rendering: http://graphics.stanford.edu/workshops/ibr98/
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