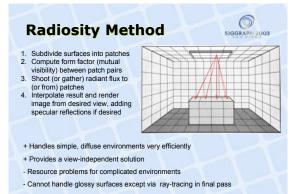
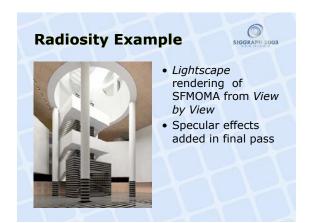


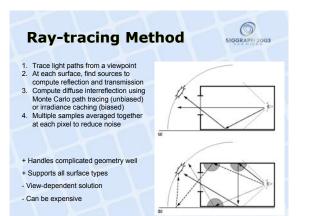
Global Illumination

- Accounts for most (if not all) visible light interactions
- Goal may be to maximize realism, but more often "visual reproduction"
- Visible light often outside the range of standard displays and formats

 HDRI format is required
 - HDR display would be nice


GI Techniques


- Radiosity
 - Divide surfaces into patches
 - Compute diffuse light exchange
 - Final pass can add specular effects
- Ray-tracing
 - Follow individual light paths each pixel


0

SIGGRAPH 2003

- Monte Carlo sampling for everything
- Filter resulting image to reduce noise

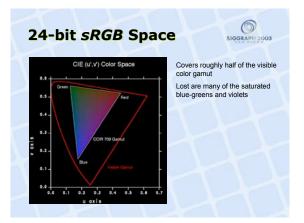
Ray-tracing Example Radiance rendering of Mandalay-Luxor Retail Complex from Arup Lighting Fritted glass on roof partially scatters sunlight

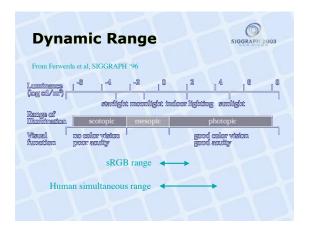
SIGGRAPH 2003

 \bigcirc

GI and HDRI

Traditional CG rendering constrains input to fit within 24-bit RGB gamut


0


SIGGRAPH 2003

- Global Illumination algorithms attempt to simulate the real world, which has no such constraints
 - CG rendering parallels TV broadcasting
 - GI rendering parallels film photography
- What we need is a digital film format

The 24-bit Red Green Blues

- Although 24-bit *sRGB* is reasonably matched to CRT displays, it is a poor match to human vision
 - People can see twice as many colors
 - People can see twice the log range
- Q: Why did they base a standard on existing display technology?
- A: Because signal processing used to be expensive...

Some HDRI Formats

• Pixar 33-bit log-encoded TIFF

0

SIGGRAPH 2003

SIGGRAPH 2003

- Radiance 32-bit RGBE and XYZE
- IEEE 96-bit TIFF & Portable FloatMap
- 16-bit/sample TIFF (I.e., RGB48)
- LogLuv TIFF (24-bit and 32-bit)
- ILM 48-bit OpenEXR format
- Others??

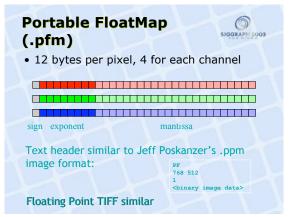
Pixar Log TIFF Codec

Purpose: To store film recorder input

- Implemented in Sam Leffler's TIFF library
- 11 bits each of log red, green, and blue
- 3.8 orders of magnitude in 0.4% steps
- ZIP lossless entropy compression
- Does not cover visible gamut
- Dynamic range marginal for image processing

Radiance RGBE & XYZE

Purpose: To store GI renderings


- Simple format with free source code
- 8 bits each for 3 mantissas + 1 exponent
- 76 orders of magnitude in 1% steps
- Run-length encoding (20% avg. compr.)
- RGBE format does not cover visible gamut
- Color quantization not perceptually uniform
- Dynamic range at expense of accuracy

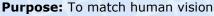
Radiance Format (.pic, .hdr)	
32 bits / pixel	
Red Green	Blue Exponent
(145, 215, 87, 149) =	(145, 215, 87, 103) =
$(145, 215, 87) * 2^{(149-128)} =$	$(145, 215, 87) * 2^{(103-128)} =$
(1190000, 1760000, 713000)	(0.00000432, 0.00000641, 0.00000259)
Word Grag "Deel Divals" in Graphics Conv	I s IV, edited by James Arvo, Academic Press, 1994
ward, Greg. "Real Pixels," in Graphics Gens	1V, edited by James Arvo, Academic Press, 1994

IEEE 96-bit TIFF & Portable FloatMap

Purpose: To minimize translation errors

- Most accurate representation
- Files are enormous - 32-bit IEEE floats do not compress well

16-bit/sample TIFF (RGB48)

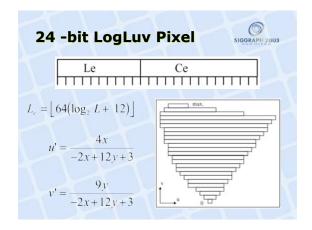

Purpose: Higher resolution than 8-bit/samp

0

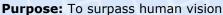
SIGGRAPH 2003

- Supported by Photoshop and TIFF libs
- 16 bits each of log red, green, and blue
- 5.4 orders of magnitude in < 1% steps
- LZW lossless compression available
- Does not cover visible gamut
- Good dynamic range requires gamma=2.2, not linear, and white much less than 1 - Photoshop treats 1 as white, which is useless

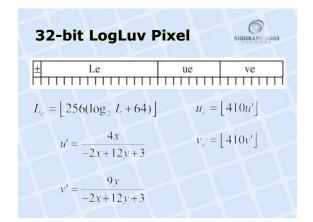
24-bit LogLuv TIFF Codec

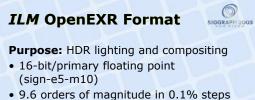

Implemented in Leffler's TIFF library

0

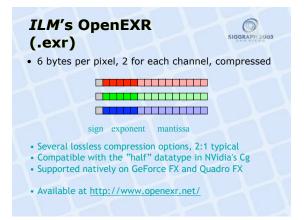

SIGGRAPH 2003

 \bigcirc


- 10-bit LogL + 14-bit CIE (u',v') lookup
- 4.8 orders of magnitude in 1.1% steps
- Just covers visible gamut and range
- No compression



32-bit LogLuv TIFF Codec



- Implemented in Leffler's TIFF library
- 16-bit LogL + 8 bits each for CIE (u',v')
- 38 orders of magnitude in 0.3% steps
- Run-length encoding (30% avg. compr.)
- Allows negative luminance values

- Wavelet compression of about 40%
- Negative colors and full gamut RGB
- Open Source I/O library released Fall 2002

