
New Algorithms for Modeling and Rendering Architecture from

Photographs

by

Georgi Dobrinov Borshukov

B.S. (University of Rochester) 1995

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Jitendra Malik, Chair
Professor David Forsyth

Spring 1997

The dissertation of Georgi Dobrinov Borshukov is approved:

Chair Date

Date

Date

University of California at Berkeley

Spring 1997

New Algorithms for Modeling and Rendering Architecture from

Photographs

Copyright Spring 1997

by

Georgi Dobrinov Borshukov

1

Abstract

New Algorithms for Modeling and Rendering Architecture from Photographs

by

Georgi Dobrinov Borshukov

Master of Science in Electrical Engineering and Computer Science

University of California at Berkeley

Professor Jitendra Malik, Chair

Fa�cade is a system developed by Paul Debevec, C. J. Taylor, and Prof. Jitendra Malik

for modeling and rendering 3-D architectural models from photographs. Until recently, the

reconstruction capabilities of Fa�cade were limited to polyhedral structures such as boxes,

frustums, octagons, etc. The rendering algorithms were computationally expensive. Fa�cade

needed tools for recovery of some non-polyhedral structures appearing in architecture. The

�rst part of this work describes a new set of tools for recovery of surfaces of revolution

and arches which made a project such as the reconstruction of the majestic Taj Mahal

from a single uncalibrated photograph possible. The second part, describes the signi�cant

advances made in image-based rendering. New robust ways of performing view-dependent

texture mapping are introduced. The novel rendering algorithms allowed us to produce

completely photorealistic renderings of
ying around the Berkeley tower, the Campanile,

and the surrounding campus at speeds close to real-time.

2

Professor Jitendra Malik
Dissertation Committee Chair

iii

To my family,

My Father Dobrin, My Mother Sneji, and My Sister Margi

Borshukovi

iv

Contents

List of Figures vi

1 Reconstruction 1
1.1 Camera Model and Coordinate System Transformations 2
1.2 Arches . 3

1.2.1 Derivation . 3
1.2.2 Reconstruction Steps . 4
1.2.3 Results . 6

1.3 Surfaces of Revolution . 7
1.3.1 Derivation . 7
1.3.2 Reconstruction Steps . 10
1.3.3 Results . 11

1.4 3-D Point Positions . 11
1.5 Berkeley Campus Environment Terrain . 13

1.5.1 Campus Terrain . 13
1.5.2 Extending the Mesh to the Environment Horizon 14

2 Rendering 16
2.1 Exploration of Projective Texture Mapping in OpenGL 16

2.1.1 Practice . 17
2.1.2 Results . 19
2.1.3 Need for a Visibility Algorithm . 22

2.2 Selecting the Image Cameras for Texture Mapping 23
2.2.1 Non View-Dependent Texture Mapping 24
2.2.2 View-Dependent Texture Mapping 24

2.3 Implementation of the Multi-Pass Renderer 37
2.3.1 Non View-Dependent Texture Mapping 37
2.3.2 View-Dependent Texture Mapping 37
2.3.3 Invisible Geometry . 38
2.3.4 Display Loop . 40

2.4 Features of the Multi-Pass Renderer . 40
2.4.1 Options and File Formats . 40

v

2.4.2 Modes . 43

Bibliography 45

vi

List of Figures

1.1 Camera model . 3
1.2 Geometry of the arch reconstruction method 5
1.3 Reconstruction of the Arc de Triomphe . 6
1.4 Geometry of the SOR reconstruction method 9
1.5 Reconstruction of the Taj Mahal . 12
1.6 Reconstruction of the Berkeley campus terrain 15

2.1 Projective texture mapping in OpenGL - Taj Mahal and Arc de Triomphe . 20
2.2 Projective texture mapping in OpenGL - San Francisco Museum of Modern

Art . 21
2.3 Artifacts of projective texture mapping without visibility pre-processing . . 23
2.4 Photographs used in the texture mapping for the photorealistic environment

of the Berkeley campus and tower . 25
2.5 Camera selection for Non View-Dependent Texture Mapping 26
2.6 Visibility and rendering results for the campus environment model 27
2.7 Original local coordinate system for image camera position 2-D mapping . 28
2.8 Image camera position 2-D mapping . 29
2.9 Nearest-neighbors method for camera selection 30
2.10 Delaunay triangulation method for camera selection 32
2.11 Example of a common con�guration where the Delaunay method for camera

selection fails . 33
2.12 Adjusting to a regular sampling grid for camera selection 35
2.13 Visibility and rendering results for view-dependent texture mapping of the

Berkeley tower . 36
2.14 Results of the di�erent rendering passes . 39
2.15 Multi-pass rendering display loop . 41
2.16 Renderings of
ying around the Berkeley tower 44

vii

Acknowledgements

I want to thank Paul Debevec, Yizhou Yu, C.J. Taylor, Carl Korobkin, Jitendra Malik,

Jason Luros, Vivian Jiang, Chris Wright, and Sami Khoury for making the Campanile

movie project happen. I also want to thank Ismail Eldumiati, Randy Chung, and Rockwell

Semiconductor Systems for their invaluable help and support.

1

Chapter 1

Reconstruction

Originally, the reconstruction capabilities of Fa�cade presented in [2, 3] which were

based on the work in [14] were limited to polyhedral structures such as boxes, frustums,

octagons, etc. Fa�cade de�nately needed tools for recovery of some non-polyhedral structures

commonly appearing in architecture. One class of such structures are surfaces of revolution

(SORs) demonstrated in columns, domes, minarets, etc. Another common class are arches.

In general, the problem of reconstructing such objects could be extremely complex, and

there is a signi�cant amount of computer vision literature addressing the issue [4, 5, 8, 11,

13, 15]. However, in the context of architectural scenes where the camera positions and the

proportions of polyhedral structures could be recovered robustly through the minimization

algorithm from [14] inside Fa�cade, the problem of arch and surface of revolution recovery

is considerably simpli�ed. After looking at di�erent approaches that did not seem to �t

our particular goals well, a simple and elegant solution was found. Fa�cade now has features

that made a project such as the reconstruction of the Taj Mahal from a single photograph

2

found on the Internet possible (see Fig. 1.5). Our camera model is described in section 1.1.

Details about the recovery of arches can be found in section 1.2. Details about the recovery

of surfaces of revolution can be found in section 1.3.

1.1 Camera Model and Coordinate System Transformations

The reconstruction methods described in the following sections are based on using

the camera model from Fig. 1.1. We assume that the image has been properly undistorted

and the camera calibrated using the pre-existing algorithms of Fa�cade. Therefore, the

focal length f and the center of the image plane (u0; v0) in pixels are known. Also the

camera position in the world coordinate system de�ned by the rotation matrix RC and

the translation vector TC = [TCx TCy TCz
]T have been previously reconstructed by the

minimization algorithm. With these quantities, we can easily obtain the camera coordinates

p of a point with world coordinates pW = [xW yW zW]T with the transformation

p = RC(pW � TC) (1.1)

and vice versa

pW = [RC]�1p +TC (1.2)

With the above information we can also convert an image measurement pIi = (xIi ; y
I
i) to a

point in the camera coordinate system pi = [xi yi �1]T with the equations:

xi = (xIi � u0)
1

f

yi = (yIi � v0)
1

f
(1.3)

3

C

xC

Cy

p
i
I

p
i

u0)(v0

pW

yW

xW

z W
T C

R

z

C

Camera coordinate system

p

,

(0, 0)

(w, h)

f

World coordinate system

COP

3-D point

Image plane

Figure 1.1: Camera model

1.2 Arches

1.2.1 Derivation

The arch is initially created as a rectangular arch box block for which the parent

and relation are speci�ed. Then, its width, depth, and height are reconstructed by the

minimization algorithm. We know image points like pIi = (xIi ; y
I
i) marked by the user that

lie on the arch contour in the image plane. These points are expressed in camera coordinates

according to equation 1.3.

Now �ipi are rays from the camera's COP passing through the marked points in

the image (see Fig. 1.3). These rays intersect the face of the arch box where the arch begins

at points �i0pi. To �nd these intersections, i.e. the values of �i0, we use the face normal

4

nW and a point Pc on the arch face (the middle point of the bottom edge) with world

coordinates pWc and camera coordinates pc obtained by equation 1.1. The points �i0pi lie

on the face, therefore, their distances from the face are:

[�i0pi � pc]
T (RCnW) = 0 (1.4)

which gives:

�i0 =
pTc (R

CnW)

pTi (R
CnW)

(1.5)

We need to rotate the vectors (�i0pi�pc) back into world coordinates to obtain the desired

vectors rWi :

rWi = [RC]�1(�i0pi � pc) (1.6)

The algorithm uses the projections ri and hi of these vectors onto the bottom edge and the

middle axis of the arch face to automatically generate the arch surface.

1.2.2 Reconstruction Steps

The actual procedure for reconstructing an arch within Fa�cade goes as follows:

1. First, the user selects Arch Box from the Add Block submenu of the World Viewer.

The program includes an arch box block (a box with 2 extra edges marking the arch

faces).

2. The arch box position and dimensions are then reconstructed with Fa�cade's existing

algorithms after specifying the necessary line correspondences.

3. The user selects an image and then marks the points pIi on the occluding contour of

the arch in this image with Fa�cade's point marquee tool.

5

xW

Cx

(x , y)i i
I I

p
ii

p p

µ

n

r

W

r

h

y

 cP

c c

W

W

W

z
W

Cz

Cy

ii

i

0

Figure 1.2: Geometry of the arch reconstruction method.

4. In order to prevent the algorithm from using points marked on another contour, the

user surrounds the points to be used in the reconstruction with Fa�cade's quad tool.

5. Then the Arch Box option from the Reconstruct submenu is selected. This invokes

the algorithm described in the previous section. For each marked point pIi within the

quad it �nds the values ri and hi.

6. These values are used for procedural generation of an arch block following the block

�le syntax. The block �le is saved on disk and then automatically included in the

World Viewer replacing the old arch box.

6

1.2.3 Results

Fig. 1.3 shows the results of reconstructing a 3-D model of the Arc de Triomphe

using the new arch recovery tools.

(a) (b)

(c) (d)

Figure 1.3: Model of the Arc de Triomphe demonstrating the new arch recovery capabilities
of Fa�cade. (a) One of three photographs used to reconstruct the Arc de Triomphe, with
marked features indicated. (b) Reconstructed model edges projected into the original pho-
tograph. (c) Recovered model of the Arc de Triomphe. (d) Another view of the recovered
3-D model.

7

1.3 Surfaces of Revolution

1.3.1 Derivation

The method that we use for reconstructing a surface of revolution assumes that

its central axis is known. This means that we need a point on the axis pWb (usually the

base point). In architecture, for example, this is often known when the SOR lies centered

on top of the underlying parent block. Otherwise, we could get such a point from two

images (see section 1.4 about reconstructing point positions). We also require knowledge

of the axis direction, which for most practical cases is yW = [0 1 0]T , the vertical axis

of the world. We also know image points pIi = (xIi ; y
I
i) marked by the user that lie on the

occluding contour in the image plane.

First, we get the camera coordinates pb of the base point using equation 1.1. Then

the axis direction of the SOR is expressed in the camera coordinate system m = RCyW.

The contour points also get converted according to equation 1.3.

We want to �nd the minimum distances between the ray pb+�m and and the set

of rays �ipi (see Fig. 1.4). Exploiting the fact that the minimum distance vectors

di0 = (�i0pi � pb � �i0m) (1.7)

must be perpendicular to the rays pb + �m and �i0pi, conveniently our task boils down to

solving the following simultaneous equations with respect to �i0 and �i0.

�i0p
T
i di0 = 0

�i0m
Tdi0 = 0 (1.8)

Excluding the trivial solutions �i0 = 0 and �i0 = 0 and substituting equation 1.7 into

8

equation 1.8 we get

A�i0 � C�i0 = B

C�i0 �E�i0 = D (1.9)

where

A = pTi pi

B = pTi pb

C = pTi m (1.10)

D = mTpb

E = mTm

Further solving the system of simultaneous equations in 1.9 we obtain

�i0 =
BC �AD

AE � C2

�i0 =
B + C�i0

A
(1.11)

Now knowing �i0 and �i0, the radius Ri of a circular cross section o�set by Hi = �i0 from

pb in the direction of m can be expressed by

Ri =
q
dTi0di0 (1.12)

The algorithm uses the quantities Hi and Ri to automatically generate the surface of revo-

lution.

9

λ mp
b

(x , y)i i
I I

p
by

z
xC

C

C

y

x

W

zW

W

p
b
W

+

i

m

R

H

mp
b µ+

ipµ i

ip0i
λi0 i

i

i

d 0

Figure 1.4: Geometry of the SOR reconstruction method.

10

1.3.2 Reconstruction Steps

The actual procedure for reconstructing a surface of revolution within Fa�cade goes

as follows:

1. First, the user selects Surface of Revolution from the Add Block submenu of theWorld

Viewer. The program includes an axis block (a single vertical edge) which can be seen

in faces o� mode.

2. The axis position is then speci�ed, either with relation to its parent block, or recon-

structed as a position in space from two images with the 3-D point position recovery

tool.

3. The user selects an image and then marks the points pIi on the occluding contour of

the SOR in this image with Fa�cade's point marquee tool.

4. In order to prevent the algorithm from using points marked on another contour, the

user surrounds the points to be used in the reconstruction with Fa�cade's quad tool.

5. Then the Surface of Revolution option from the Reconstruct submenu is selected.

This invokes the algorithm described in the previous section. For each marked point

pIi within the quad it �nds the values Ri and Hi.

6. These values are used for procedural generation of a SOR block following the block

�le syntax. The block �le is saved on disk and then automatically included in the

World Viewer replacing the SOR axis block.

11

1.3.3 Results

Fig. 1.5 demonstrates the successful use of the new SOR recovery algorithms for

reconstructing a 3-D model of the Taj Mahal.

1.4 3-D Point Positions

During the attempts for reconstructing a terrain mesh for the Berkeley campus

environment (see section 1.5) a new tool for reconstructing single points in space through

point correspondences was developed within Fa�cade. The reconstruction steps are described

below:

1. First the user selects 3-D Point Position from the Add Block submenu of the World

Viewer. The program includes a block (a single vertical edge) which can be seen in

faces o� mode. The bottom vertex of this edge de�nes the point position in space.

2. The user selects one or two images and marks with Fa�cade's point marquee tool in

each image the point which 3-D position needs to be recovered.

3. The user then corresponds the vertical edge of the 3-D point position block to the

points marked in the images: pI (in the case of one image) or pI
1
and pI

2
(in the two

image case).

4. Then the 3-D Point Position option from the Reconstruct submenu is selected. This

invokes an algorithm which, in the case of two correspondences, assumes that the

point position lies in the middle of the minimum distance sector between the rays

from the image cameras' COPs through the marked points pI
1
and pI

2
. In the case of

12

(a) (b)

(c) (d)

Figure 1.5: Model of the majestic Taj Mahal created with the new surface of revolution
and arch reconstruction tools. (a) A single low-resolution photograph of the Taj Mahal
obtained from the Internet, with marked features shown. (b) Reconstructed model edges
projected onto the original photograph. (c) 3-D model of the Taj Mahal, complete with
domes and minarets, recovered from the single photograph in less than an hour of modeling
time. (d) Another view of the recovered 3-D model.

13

a single correspondence, the point position is reconstructed at a �xed distance along

the ray from the image camera's COP through the point pI.

1.5 Berkeley Campus Environment Terrain

This section describes the procedures of reconstructing a 3-D model of the Berkeley

campus that was later used in the photorealistic renderings of the Berkeley tower
y-by.

1.5.1 Campus Terrain

Using Fa�cade we were able reconstruct about 47 campus buildings from aerial

photographs and photographs taken from the Berkeley tower (see Fig.1.6 (a)). We had

buildings
oating in space, which was not enough. Somehow we needed to reconstruct the

campus terrain. We noticed that we already had plenty of elevation data from the bases of

the buildings. This data was extended by reconstructing extra points around the tower and

the campus periphery with the new 3-D point position recovery tool. Then, the campus

terrain 3-D mesh, in Fig. 1.6 (b) and (c), was generated in the format of a Fa�cade block in

the following way:

1. We extracted the bottom-most (minimum y-coordinate) vertices of every Fa�cade block

whose parent was the ground plane. This gave us a cloud of 3-D points, which repre-

sented our elevation dataset.

2. The elevation points were then projected onto the ground (x� z plane).

3. Next we performed a Delaunay triangulation on this set of planar points.

14

4. Finally, we used the vertex connectivity obtained after the triangulation to connect

the 3-D points in space and obtain a 3-D mesh approximating the campus terrain.

1.5.2 Extending the Mesh to the Environment Horizon

The next task was reconstructing a model of the environment beyond the campus

periphery. For this we started by marking points on the image horizon. Then each point

was corresponded to a 3-D point position block. The 3-D point positions were reconstructed

at a great distance along the rays from the camera COPs through the image marks. These

new points along the horizon had to somehow be connected to the campus terrain. Initially,

we tried to use the technique described in the previous section, but that produced bad

triangulations of the horizon points since their projections onto the ground plane did not

form a convex polygon. In order to solve the problem of properly connecting the horizon

points to the campus terrain points, we implemented a new triangulation algorithm. The

algorithm visits each 3-D horizon point in order and �nds its closest campus terrain point.

Then it establishes edges and faces between those two points, the previous horizon point

and its closest campus point. Similar techniques were used to model the sky.

15

(a) (b)

(c) (d)

Figure 1.6: Campus environment model demonstrating the new 3-D point position and 3-D
mesh reconstruction algorithms. (a) Campus buildings reconstructed with Fa�cade. (b)
Delaunay triangulation of the elevation dataset. (c) The recovered campus 3-D terrain
mesh. (d) Environment horizon.

16

Chapter 2

Rendering

This chapter presents the new rendering techniques we developed for performing

both view-dependent and non view-dependent hardware projective texture mapping. The

view-dependent projective texture mapping scheme described in [3] was computationally

expensive. It required about 10 minutes to render a single synthetic view of a simple

model. Certain performance enhancements were also suggested in [3]. These enhancements

included avoiding image camera selection calculations at every pixel and pre-selecting which

real images to use for rendering a given virtual view. This chapter describes the advances

in exploring, extending, and implementing these suggestions.

2.1 Exploration of Projective Texture Mapping in OpenGL

This section presents the OpenGL capabilities for performing projective texture

mapping. Examples are provided and the need for a novel visibility algorithm is justi�ed.

17

2.1.1 Practice

Given the fundamentals and developments of texture mapping techniques cov-

ered in [6, 7, 12] the task was to �nd the most e�cient way to do the projective texture

mapping with our new ONYX RealityEngine2 capable of performing texture mapping in

hardware. For more detail about the RealityEngine architecture see [1]. The implementa-

tion in OpenGL involved careful examination of its automatic texture coordinate generation

capabilities (see [10, 9]).

After appropriate parameter speci�cation for the texture coordinate generation

function, each texture coordinate s, t, r, and q for a vertex could be a linear combination

of the object coordinates of the vertex [xO yO zO wO]T . This could be written as

2
6666666666664

s

t

r

q

3
7777777777775

=

2
6666666666664

ps1 ps2 ps3 ps4

pt1 pt2 pt3 pt4

pr1 pr2 pr3 pr4

pq1 pq2 pq3 pq4

3
7777777777775

2
6666666666664

xO

yO

zO

wO

3
7777777777775

(2.1)

For projective texture mapping we need the matrix to be identity which could be ensured

by supplying the values 1; 0; 0; 0 for ps1; ps2; ps3; ps4, 0; 1; 0; 0 for pt1; pt2; pt3; pt4, and so on

using the appropriate OpenGL calls. For the s texture coordinate, this can be accomplished

by:

GLfloat objectPlaneS[] = { 1.0, 0.0, 0.0, 0.0 };

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGenfv(GL_S, GL_OBJECT_PLANE, objectPlaneS);

In OpenGL, just as model coordinates are transformed by a matrix before being

rendered, texture coordinates are multiplied by a 4� 4 matrix Mtexture before any texture

18

mapping occurs. 2
6666666666664

s0

t0

r0

q0

3
7777777777775

=Mtexture

2
6666666666664

s

t

r

q

3
7777777777775

(2.2)

This matrix is identity by default. However, by modifying it while redrawing an object,

one can make the texture slide over the surface, rotate around it, stretch and shrink, or any

combination of the three. In fact, e�ects such as perspective, in which we are interested,

can be achieved since Mtexture is a completely general 4� 4 matrix.

The transformed texture coordinates [s0 t0 q0 r0]
T are interpreted as homo-

geneous. In other words, the texture map is indexed by s0

q0 and t0

q0 . For our purposes of

projecting photographs onto geometry reconstructed from them the texture matrix has the

following structure. It contains a part that performs the projection of the model vertices

into the appropriate image texture plane. A second part makes a scaling and translational

adjustment of the coordinates in order to account for the fact that texture coordinates al-

ways run from 0 to 1, starting at the texture's bottom left corner and texture size is always

restricted to 2m � 2n where m and n are integers.

Since we have already set [s t r q]T = [xO yO zO wO]T and, in our

case, the entire geometry is in world coordinates, i.e. the vertex object coordinates are ef-

fectively world coordinates, the �rst part of the texture coordinate transformation involves

the familiar quantities RC and TC. These quantities specify the image camera position

with respect to the world and determine the transformations from world to camera coor-

dinates and vice versa. Those matrices are determined with Fa�cade during the 3-D model

19

reconstruction. Therefore, the �rst part of the texture matrix is PRT where

T =

2
6666666666664

1 0 0 �TCx

0 1 0 �TCy

0 0 1 �TCz

0 0 0 1

3
7777777777775

R =

2
6664
RC 0

0 1

3
7775 P =

2
6666666666664

1 0 0 0

0 1 0 0

0 0 �1 �2n

0 0 �1 0

3
7777777777775

(2.3)

The matrix P is the perspective projection matrix used in Fa�cade and n is the near clipping

plane.

The second part assures that the automatically-generated texture coordinates are

going to correctly index the image texture map, which is a resized photograph. It uses

information for the camera focal length f , image plane center (u0; v0), and image size

w � h. This second part of the texture matrix is

TcopS =

2
6666666666664

1 0 0 u0
w

0 1 0 v0
h

0 0 1 0

0 0 0 1

3
7777777777775

2
6666666666664

f
w

0 0 0

0 f
h

0 0

0 0 1 0

0 0 0 1

3
7777777777775

(2.4)

So, �nally for the texture matrix we have

Mtexture = TcopSPRT (2.5)

2.1.2 Results

The procedure for performing projective texture mapping, which was presented in

the previous section, was used to generate the results in Fig. 2.1 (a), 2.1 (b), and 2.2 (b).

The synthetic images are snapshots of an application that lets the user manipulate the 3-D

model interactively in real-time.

20

(a)

(b)

Figure 2.1: The images above are snapshots of a real-time projective texture mapping
application written in OpenGL that projects a single photograph at a time onto a Fa�cade
3-D model. (a) The photograph from 1.3 (a) projected onto the Arc de Triomphe model.
(b) The photograph from 1.5 (a) projected onto the Taj Mahal model.

21

(a)

(b)

Figure 2.2: Another example of real-time projective texture mapping. (a) One of two
photographs used in the reconstruction of a 3-D model of the San Francisco Museum of
Modern Art by Yizhou Yu. (b) The photograph from (a) projected onto the SFMOMA
model.

22

The application takes as input the original geometry generated with Fa�cade and

exported in a save.blocks �le, as well as, the images used in the reconstruction. The user

can switch between the images that are projected onto the model. The application produces

pleasing e�ects, as long as the synthetic view is not too far from the position from which

the photograph was taken.

2.1.3 Need for a Visibility Algorithm

When parts of the geometry not visible in the original image are exposed, we

are able to notice an interesting but unpleasant artifact of the projective texture mapping

scheme. The algorithm lacks the notion of visibility, so parts of the geometry that are

occluded in the original image still receive legible texture coordinates and are incorrectly

texture mapped instead of remaining in shadow. The e�ect is easily observed in Fig. 2.3.

This result clearly shows the need for a pre-processing step which would determine the

visibility of the di�erent parts of the model in the images used in the texture projection.

An algorithm developed and implemented by Yizhou Yu, with some help from me and Paul

Debevec, uses a hybrid (object-image space) approach. First the original model geometry is

clipped to each camera's viewing frustum, then appropriately triangulated and subdivided.

The resulting triangles are then rendered with a unique color ID from the viewpoint of each

image camera. The resulting images are used to determine the visibility of triangles. Trian-

gles partially visible in a certain image camera are clipped (in object space) to neighboring

(in image space) triangles. For completely invisible triangles, vertex colors are derived from

neighboring visible triangles. At the end, the program outputs a �le (see section 2.4.1) with

the following information:

23

Figure 2.3: Viewing the model from a viewpoint far from the original produces artifacts
unless proper visibility pre-processing is performed.

1. For each visible triangle: a list of image cameras in which the triangle is visible.

2. For each invisible triangle: vertex colors derived from neighboring visible triangles.

2.2 Selecting the Image Cameras for Texture Mapping

After the visibility problem was resolved, we faced another interesting problem.

For each triangle in the model geometry, we could now have more than one image camera

in which the triangle was visible. This posed a couple of questions. How many of the visible

image cameras per triangle should we use in the texture mapping? How should we select

them? After the selection, in what proportions should we blend them?

The following sections describe �rst a scheme in which a single image camera per

triangle is used in the texture mapping. Then, the development of a new view-dependent

texture mapping scheme is presented. In this scheme, three image cameras per triangle are

24

selected based on the current viewpoint, and their textures blended in appropriate ratios.

2.2.1 Non View-Dependent Texture Mapping

This section describes a simple method for selecting a single image camera per

triangle which would always be used to texture map this triangle independent of the current

viewpoint.

The selection criterion is based on computing the dot product between the triangle

normal n and the viewing direction vi = [RC]�1[0 0 �1]T of an image camera i in which

the triangle is visible (see Fig. 2.5). Therefore, for each individual triangle the best image

camera is determined by

best camera = arg

�
min
i
(nTvi)

�
(2.6)

This scheme produces satisfactory results (see Fig. 2.6). Its biggest advantage

is that it eliminates any additional processing during the rendering display loop and thus

achieves faster renderings.

2.2.2 View-Dependent Texture Mapping

Early Versions: Minimum Distance and Triangulation

This section describes some early attempts to select the 3 image cameras and their

weights to be used in the texture mapping of a single triangle from the model geometry. This

selection has to be made for every triangle and for every new view that is being rendered.

All approaches use a 2-D mapping of the image cameras and the current viewpoint on the

surface of each triangle from the model geometry. The local coordinate system, in which

25

(a)

(b)

Figure 2.4: The images above were used to texture map the model from Fig.1.6 to create the
photorealistic renderings of
ying around the Berkeley tower. (a) Environment photographs
taken from the top of the Berkeley tower (courtesy of Paul Debevec). (b) Tower photographs
taken from ground level and a kite rig (courtesy of Paul Debevec and Prof. Charles Benton).

26

vn

v

v

1

2

i

Figure 2.5: For each triangle the best camera is the selected based on the angle between
the triangle normal n and the viewing directions v1;v2; :::;vi; ::: of the cameras in which
the triangle is visible.

the 2-D mapping coordinates are expressed, was originally constructed as shown in Fig 2.7

according to equation 2.7. Later, we are going to demonstrate that this construction was

not the best one and had to be changed.

x =
v0 � c

jv0 � cj

y = n� x (2.7)

where n is the triangle unit normal, c is the triangle centroid and v0 one of the triangle

vertices.

The camera position mapping we decided to use is approximately metric preserv-

ing. It is constructed as seen in Fig. 2.8 in the following way. We �rst obtain v = TC�c
jTC�cj

,

the unit vector in the direction from the triangle centroid to the image camera's COP lo-

cation. We then rotate this vector into the x� y plane of the local coordinate system for

27

(a)

(b)

Figure 2.6: Texture mapping using a single texture per triangle: (a) Visibility results for
the campus environment model with the images from Fig. 2.4 (a): triangles seen in 1 image
camera are in red, in 2 image cameras are in green, in three image cameras are in blue, etc.
Invisible in white. (b) Rendering results: one texture was selected for each triangle based
on equation 2.6 and then the scene was rendered as described in section 2.3.1.

28

v0

y

n

c

Figure 2.7: Original local coordinate system for 2-D image camera position mapping.

the triangle.

vr = (n� v)� n (2.8)

This vector is then scaled by the arc length l = cos�1(nTv) and projected onto the x and

y axes giving the desired 2-D mapping of the image camera position:

x = (lvr)
Tx

y = (lvr)
Ty (2.9)

We pre-compute and store for each triangle of the model the 2-D mapping coordinates

pi = (xi; yi) for each image camera i in which the triangle is visible. The selection of three

image cameras per triangle for a virtual viewpoint always involves obtaining the the 2-D

mapping coordinates pvirtual = (xvirtual; yvirtual) of that viewpoint.

The �rst scheme used to determine the three best image cameras, based on the

current viewpoint, was simplistic. We picked the three nearest neighbors of the virtual

viewpoint based on the distance metrics (see Fig. 2.9)

d2i = (xi � xvirtual)
2 + (yi � yvirtual)

2: (2.10)

Then the weights to be used in the blending (in this example of textures from image cameras

29

rl

Local coordinate system for a

triangle of the model geometry

v

C

x

n

y
v

l

x

y

Image camera’s COP

c

T

Figure 2.8: Image camera position 2-D mapping.

4, 5, and 6) were calculated as follows:

�4 =
d�2

4

d�2

4
+ d�2

5
+ d�2

6

�5 =
d�2

5

d�2

4
+ d�2

5
+ d�2

6

(2.11)

�6 = 1� �4 � �6

This scheme obviously did not guarantee gradual transitions from one image camera to

another.

The next method theoretically was supposed to �x that problem. The idea was to

1. Triangulate the planar set of image camera mappings pi = (xi; yi) using a Delaunay

triangulation algorithm.

2. Find the triangle or region in which the current virtual viewpoint maps (see Fig.

30

2
π

_
2
π

p3

1p

pvirtual

_d x

y

2

p7

p4

p5

p6

p

4d
5d

6

Figure 2.9: Nearest-neighbors method for camera selection.

31

2.10).

3. If the viewpoint mapped into a region outside the convex-hull of the set of image

camera mappings pi, e. g. p0
virtual, use the two image cameras (in this example 3

and 4) associated with this region in the blending. The weights are then calculated

according to equation 2.12. If one the weights becomes negative, it is reset to 0 and

the other weight is 1.

�4 =
(p4 � p3)

T (p0
virtual � p3)

jp4 � p3j2

�3 = 1� �4 (2.12)

4. If the viewpoint mapped inside a triangle, e.g. p00
virtual, use the three image cameras

represented by its vertices in the blending (4, 5, and 6 in this example). The weights

are the barycentric coordinates of p00
virtual in the triangle in which it lies:

�4 =
�p5p6p00

virtual

�p5p6p4

�5 =
�p6p4p00

virtual

�p5p6p4

�6 = 1� �4 � �5 (2.13)

where � is the area of the triangle formed by the points in the subscript.

This technique, unfortunately, did not produce the expected results. Generic sets

of image camera positions (see Fig. 2.11 (a)) produced degenerate planar mappings and

triangulation con�gurations, like the one shown in Fig. 2.11 (b). The presence of long and

skinny triangles meant that the virtual viewpoint would rarely map inside them. If it did

that would happen only for a frame or two, and then map outside again. That ultimately

32

2
π

_
2
π

b3

p’virtual
p’’virtual

p3

_

6

x

y

p2

p7

p4

p5

b4
b5

b1

b2

p1

p

Figure 2.10: Delaunay triangulation method for camera selection. The points pi are the
planar mappings of the image cameras in which the triangle is visible. The points bi are
the intersections of the bisectors at each point of the convex-hull with the square region.

33

resulted in more noticeable changes in the texturing of the model geometry with the change

of viewpoint. In order for this scheme to work, we had to guarantee picture sets that were

taken at very di�erent elevations (certainly, a quite impractical requirement). Clearly, we

needed to come up with a more robust solution.

2
π

_
2
π

p
1 p2

p4

p3

b1

b2

b3

_

4

x

y

b

(a) (b)

Figure 2.11: An example where the Delaunay method fails. (a) A common image cam-
era con�guration. (b) The corresponding 2-D mapping triangulation for a triangle from
the model geometry contains long and skinny triangles. This results in undesired sud-
den changes of the set of three image cameras used for texturing when moving the virtual
viewpoint.

A Solution: Adjustment to a Regular Sampling Grid

The solution to the problem was to adjust the image camera 2-D mappings to a

regular sampling grid instead of using a con�guration like the one from Fig. 2.11 (b). In

order to achieve this we developed the following algorithm (see Fig. 2.12).

34

1. Construct a regular grid for the image camera position 2-D mapping space of each

triangle from the model geometry.

2. Obtain values for the vertices of this grid by assigning the closest mapped image

camera.

3. During the rendering, �nd the triangle in which the current viewpoint maps.

4. Use the three image cameras represented by the vertices of this triangle in the blending

(4, 5, and 7 in the example from 2.12). The weights are the barycentric coordinates

of pvirtual in the triangle in which it lies.

After examining the results of the algorithm described above, we noticed a
aw in

the way we were constructing the local coordinate system xyn (see eqn. 2.7) for a triangle

of the model geometry. Triangles with the same normal n could have di�erent x and y

axes. This caused some discontinuities between the texturing of adjacent triangles with the

same normal. We had to rede�ne the coordinate system axes (see eqn. 2.14) and assure

that x and y are the same for such triangles.

x =

8>>><
>>>:

yW � n , if yW and n are not collinear,

xW otherwise

y = n� x (2.14)

where xW and yW are world coordinate system axes.

Results of applying this technique can be seen in Fig. 2.13 and details on the

implementation can be found in section 2.3.2.

35

1

p
6

p
5

p
3

p
4

p
7

p
2

p
virtual

p

5 x

y

7 7 25

4 3

4 4

34

4

5 6 2

6 1

1

1

Figure 2.12: The �nal scheme which adjusts the 2-D mappings to a regular grid guarantees
smooth changes of the set of three image cameras used for texture mapping when moving
the virtual viewpoint.

36

(a)

(b)

Figure 2.13: View-dependent texture mapping using three textures per triangle: (a) Vis-
ibility results for the tower model (courtesy of Jason Luros and Vivian Jiang) with the
images from Fig. 2.4 (b). (b) Rendering results: three textures and their weights were
selected for each triangle based on the method described in section 2.2.2 and then the scene
was rendered as described in section 2.3.2.

37

2.3 Implementation of the Multi-Pass Renderer

This section explains some details of the actual implementation of the new ren-

dering algorithm and describes certain speci�c features.

2.3.1 Non View-Dependent Texture Mapping

First, for each triangle of the model geometry, the best image camera is selected

using the criterion from section 2.2.1. Then the triangles are split into N separate lists

(N being the total number of textures/image cameras), where each new list contains only

triangles with the same best image camera. Those lists are then compiled into OpenGL

display lists. Thus, each display list contains only triangles which are going to be textured by

projecting the same image. The rendering proceeds as shown in Fig. 2.15 where the triangles

are sent for display with color (1.0, 1.0, 1.0, 1.0). This is how the campus environment is

rendered in the Berkeley campus
y-by (see Fig. 2.14 (a)).

2.3.2 View-Dependent Texture Mapping

For each triangle we pre-compute and store the centroid c, the normal n, the axes

directions x and y computed according to equations 2.14, the image camera IDs i and

planar mappings pi computed as described in section 2.2.2, the regular sampling grid and

the image camera IDs assigned to its vertices. Then before a frame is rendered for each

triangle we �nd the planar mapping of the current viewpoint pvirtual and do a quick lookup

to determine inside which triangle of the grid it lies. As explained in 2.2.2 this gives the

three best image cameras/textures and their weights �1; �2; �3.

38

After these are known, the rendering is performed in three passes. Texture map-

ping is enabled in modulate mode, where the new fragment color C is obtained by multiply-

ing the existing fragment color Cf and the texture color Ct. The Z-bu�er test is set to less

than or equal (GL LEQUAL) instead of the default less than (GL LESS). The �rst pass proceeds

by selecting an image camera, binding the corresponding texture, loading the corresponding

texture matrix transformationMtexture in the texture matrix stack and sending for display

the part of the model geometry for which the �rst best camera is the selected one with

colors (�1; �1; �1). These steps are repeated for all image cameras. The results of this pass

can seen on the tower in Fig. 2.14 (b). Before proceeding with the second pass we enable

blending in the frame bu�er, i.e. instead of replacing the existing pixel values with incoming

values, we add those values together. The second pass then selects cameras and renders

triangles for which the second best camera is the selected one with colors (�2; �2; �2). The

results of the second pass can seen on the tower in Fig. 2.14 (c). The third pass proceeds

similarly rendering triangles for which the third best camera is the currently selected one

with colors (�3; �3; �3). The results of this last pass can seen on the tower in Fig. 2.14 (d).

2.3.3 Invisible Geometry

The triangles that are not visible in any image cameras are compiled in a separate

OpenGL display list and their vertex colors are speci�ed according to the results of the

hole-�lling algorithm developed by Yizhou Yu. Those triangles are rendered in another

pass with Gouraud shading after the texture mapping is disabled.

39

(a) (b)

(c) (d)

Figure 2.14: The di�erent rendering passes in producing a frame from the photorealistic
renderings of the Berkeley campus virtual
y-by. (a) The campus buildings and terrain
after non view-dependent texture mapping. (b) The Berkeley tower after the �rst pass of
the view-dependent texture mapping scheme. (c) The Berkeley tower after the second pass
of the view-dependent texture mapping scheme. (d) The complete rendering of the scene.

40

2.3.4 Display Loop

The block diagram in Fig. 2.15 summarizes the display loop steps.

2.4 Features of the Multi-Pass Renderer

2.4.1 Options and File Formats

Options

The renderer described in the previous section takes the following command line

arguments:

usage: vdtmstagehhl [-size w h] [-path pathfilename [-calib W H U0 V0 F]

[-skip n] [-output filename [-interlaced] [-ppm|-tiff]]] [-nvd]

[triangles1-filename] <triangles2-filename>

Most of the arguments are self-explanatory. The �le pathfilename contains the camera

position information of the virtual path. It is in the format of a Fa�cade �le without any

geometry. The -calib argument speci�es the calibration values of the virtual camera.

The -skip argument speci�es that only every n-th frame should be rendered. This is how

the renderings in Fig. 2.16 were produced. The -nvd argument speci�es the use of non

view-dependent texture mapping only.

Input File Format

The �les triangles1-filename and triangles2-filename contain the model

geometry and the visibility pre-processing data for the environment and the Campanile,

respectively. The �le format is the following:

Comment

41

More image cameras?

Disable TM

specifying vertex colors
Render invisible triangles and sky

Load the appropriate M texture

in the texture matrix stack

Select an image camera

RC T C
0

)(
0f, u ,v , w, h, ,

Perform viewing transformation

Clear color and depth buffers

for VDTM of tower.
Repeat 3 more times

Enable blending after

Enable TM in modulate mode

the first pass.
Do not overwrite pixels
in the frame buffer, but

add to their values.

tC = C Cf)(

YES

NO

Bind the corresponding image texture

being the currently selected
Render all triangles with best camera

Figure 2.15: Multi-pass rendering display loop.

42

N - total number of image cameras/textures

texture-�lename - image texture with width and height powers of 2

w h - original width and height of the image

TCx TCy TCy - camera translation

� �
 - Euler angles of the camera rotation

u0 v0 f a - image plane center, focal length, aspect ratio (not used)

.

.

.

Comment

Ntriangles Nvisible - total number of triangles and number of visible triangles

v1x v1y v1z - vertex coordinates of the visible triangles

v2x v2y v2z

v3x v3y v3z

.

.

.

v1x v1y v1z - vertex coordinates of the invisible triangles

v2x v2y v2z

v3x v3y v3z

R1 G1 B1 - vertex colors of the invisible triangles

R2 G2 B2

R3 G3 B3

.

.

43

.

Comment

n - number of image cameras in which the triangles is visible

i xi yi - image camera ID and planar mapping coordinates

.

.

.

2.4.2 Modes

After the renderer has been started the user can select the following modes. In

interactive mode the user can navigate through the environment with the help of the mouse,

'w' enables the wireframe, 'l' enables the visibility labeling (see Fig. 2.6 and Fig. 2.13),

't' enables the texture mapping mode, 'v' toggles between view-dependent and non view-

dependent texture mapping on the Campanile (second geometry �le), 'i' toggles between a

regular and a full-screen rendering without window borders. In
ight-path mode, 'f ' renders

the next frame in the
ight-path, 'b' renders the previous frame in the
ight-path, and 'r'

renders the entire
ight-path from the beginning.

44

Figure 2.16: Selected frames from the photorealistic renderings of the Berkeley campus

y-by produced with the described algorithms at 6 frames/second.

45

Bibliography

[1] Kurt Akeley. RealityEngine graphics. In SIGGRAPH '93, pages 109{116, 1993.

[2] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering

architecture from photographs: A hybrid geometry- and image-based approach. In

SIGGRAPH '96, pages 11{20, August 1996.

[3] Paul E. Debevec. Modeling and rendering architecture from photographs. Doctor

of Philosophy Thesis. Computer Science Division (EECS), University of California at

Berkeley, Berkeley, CA, December 1996.

[4] Olivier Faugeras. Three-Dimensional Computer Vision. MIT Press, 1993.

[5] A. Gross and T. Boult. Recovery of Generalized Cylinders from a Single Intensity

View. In Proceedings of the Image Understanding Workshop, pages 319-330, 1990.

[6] Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applica-

tions, 6(11):56{67, November 1986.

46

[7] Paul S. Heckbert. Fundamentals of Texture Mapping and Image Warping. Masters

Thesis UCB/CSD 89/516, Computer Science Division (EECS), University of California

at Berkeley, Berkeley, CA, June 1989.

[8] Eugene S. Lin. Recovery of 3-D Shape of Curved Objects from Multiple Views. Masters

Thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, Cambridge, MA, May 1996.

[9] Tom McReynolds. Programming with OpenGL: Advanced Rendering. SIGGRAPH'96

Course Notes, New Orleans, LA, August 1996.

[10] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming Guide. Addison-

Wesley Publishing Company, New York, NY, June 1993.

[11] M. Richetin, M. Dhome, J. T. Lapreste, and G. Rives. Inverse Perspective Transform

Using Zero-Curvature Contour Points: Application to the Localization of Some Gen-

eralized Cylinders from a Single View. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, 13(2):185-192, February 1991.

[12] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli. Fast

shadows and lighting e�ects using texture mapping. In SIGGRAPH '92, pages 249{252,

July 1992.

[13] Steve Sullivan, Lorraine Sandford, and Jean Ponce. Using Geometric Distance Fits for

3-D Object Modeling and Recognition. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, 16(12):1183-1196, December 1994.

47

[14] Camillo J. Taylor and David J. Kriegman. Structure and motion from line segments in

multiple images. IEEE Trans. Pattern Anal. Machine Intell., 17(11), November 1995.

[15] Mourad Zerroug and Ramakant Nevatia. Segmentation and Recovery of SHGCs from

a Real Intensity Image. In European Conference on Computer Vision, pages 319-330,

1994.

